【岗位招聘】电气工程师干系岗位招聘名企推举(1)
凡是做过开拓事情的职员都有这样的经历,测试开关电源或在实验中有听到类似产品打高压不良的泄电声响或高压拉弧的声音不请自来:其声响或大或小,或时有时无;其韵律或深奥深厚或刺耳,或变革无常者皆有。
音频噪声一样平常指开关电源自身在事情的过程中产生的,能被人耳听到频率为20-20kHz的音频旗子暗记。电子和磁性元件的振荡频率在人耳听觉范围内时,会产生能听见的旗子暗记.这种征象在电力变换研究初期已为人知.以50和60Hz工频事情的变压器常常产生讨厌的互换噪声.如果负载以音频元件调制,以恒定超声频率事情的开关功率转换器也会产生音频噪声。
低功率电平时,音频旗子暗记常日与转换器无关.但是,设计职员可能希望降落其电路的声波发射.低功率AC-DC转换器中,将50或60Hz变压器的铁心薄片焊接在一起,能使互换噪声降至容许的水平.高频开关转换器中的铁氧体变压器也采取了类似的技木。

过去常用高等音频工程设备来研究开关电源的声波辐射.这种装置可以非常精确地丈量绝对声压级和声谱,但人类对声音的觉得是很主不雅观的.很难说多大的声音是能听到的,更难以确定的是在特定运用中多大的声音会被认为是难以忍受的噪声。
声波辐射与电磁辐射相似,但没有用于衡量听觉容忍度的通用基准.因此,设计者可以依据以下方针来处理与音频噪声干系的问题,减少产品的声音辐射。
电源音频噪声的产生与抑制方法
一:变压器产生的音频噪声
在大多数反激式转换器运用中,变压器是紧张的音频噪声源.试验板上第一个变压器原型产生的噪声每每令人吃惊.采取众所周知的恰当的构造技巧将基本上肃清噪声而不增加额外的用度.在装置原型变压器时要把稳成品性能的可重复性.
网络配图
有一些机制会产生变压器噪声,每种都会产生发生发火声音的机器位移.这些机制包括:
相对运动—磁芯两部分间的吸引力使其移动,压迫将其分隔的介质.
撞击—如果两块磁芯的表面能打仗,它们相应磁通勉励而移动会使二者碰撞或刮擦.
波折—仅在EE或EI构造的磁芯中间腿存在的裂隙,可使磁芯各部分沿其间吸引力的方向
磁致伸缩—磁芯材料的尺寸随磁通密度变革.普通功率的铁氧体的变革率小于1ppm.
骨架移动—磁芯片的位移可通过骨架传送和放大.
线圈移动—线圈中的电流产生移动这些导线的吸引力和排斥力.
移动源共同浸染,形成了繁芜的机器系统,它能在人耳听力范围内的一个或几个频点上,产生强烈的共振.10W以下离线反激式转换器常用的构造一样平常产生10k Hz到 20k Hz的共振.当磁通勉励的基频或其谐波经由机器共振区域时,移动发生发火声音.设计者应全程变换负载以考验音频噪声,特殊是须要动态负载时.
这些机制产生噪声的大小根据各自所处的不同位置决定.幸运的是,设计者可以运用大略的构造技能来有效衰减各种机制产生的音频噪声.
以下大略讲解能有效衰减各种机制产生的音频噪声的常见方法。
首先变压器要采取均匀浸渍,从而能有效添补线圈与线圈之间、线圈与骨架之间、骨架与磁芯之间的固有空隙,降落活动部件发生位移的可能性,必要时可以再磁性元件与线路板打仗面添补白胶或喷涂三防漆,进一步减小机器振动的空间,有效降落噪声。
在条件许可的情形下只管即便降落峰值磁通密度,要充分考虑高温时的饱和磁通密度,留足够余量防止事情曲线进入非线性区,可以有效降落变压器的音频噪声,有实验证明峰值磁通密度从3000高斯降为2000高斯即可将发出的噪音降落5 dB到15dB。
条件许可可以利用非晶、超微晶合金等软磁材料,它们的磁均匀同等性远比一样平常铁氧体好得多,磁致伸缩效应趋于零,因此对应力不敏感。
二:电容产生的音频噪声
所有的绝缘材料在电场的压力下均会变形,这种电致伸缩效应与电场强度的平方成正比.有些绝缘介质还呈现压电效应,即与电场强度成正比的线性位移.压电效应常日是电容产生噪声的紧张路子.
廉价的小陶瓷电容中的非线性绝缘材料常日含有大比例的钛酸钡,在正常事情温度下产生压电效应.因而,这些元件会比线性绝缘成份的电容产生更多的噪声.开关电源中,电压偏移最大的箝位电路中的电容最有可能产生音频噪声.
常日为了抑制电磁滋扰和减鄙吝件电压应力,开关电源一样平常采取RC、RCD等接管电路,接管电容常常选用高压陶瓷电容,而高压陶瓷电容是由非线性电介质钛酸钡等材料制成,电致伸缩效应比较明显,在周期性尖峰电压的浸染下,电介质不断发生形变从而产生音频噪声。
网络配图
电容噪声的一样平常办理方法
办理的方法是把接管回路用的高压陶瓷电容换成电致伸缩效应很小的聚脂薄膜电容,这样可以基本肃清电容产生的噪声。
要确定陶瓷电容是否紧张噪声源,可以用不同绝缘体的电容来更换.薄膜电容是性价比不错的替代品.但应把稳更换品是否能经受得住反复的尖峰电流和电压应力.
另一种具有价格竞争力的选择是用齐纳箝位电路来替代RCD箝位电路.齐纳箝位的价格已与RCD箝位的相称,但占用的空间小得多而效率更高.
三:电路振荡产生的音频噪声
当电源在事情过程中有问歇式振荡产生时,会引起线圈磁芯间歇式振动,当此振荡频率靠近绕变压器的固有振荡频率时,易引发共振征象,此时将产生人耳所能听到的音频噪声。
电路振荡产生的缘故原由有很多,下面大略讲解:
1:PCB设计不当
A)功率大电流地线与掌握回路地线共用同一走线,由于PCB覆铜线并非空想导体,它总是可以等效成电感或电阻,当功率电流流过了和旗子暗记掌握回路共用的PCB线,在PCB上产生电压降落,特殊是采取多点接地时,由于掌握电路各节点分散在不同位置,功率电流引起的电压降对掌握电路叠加了扰动,使电路发出噪音,这问题常日采取单点接地可以得到改进。
B)芯片VCC电源走线过长、或离高dt/di大电流走线过近而受到滋扰,这问题一样平常可通过在靠近芯片VCC引脚加个104瓷片去耦电容器得到改进。
C)基准稳压ICTL431的接地线失落误、同样的次级的基准稳压 IC的接地和低级IC 的接地一样有着类似的哀求,那便是都不能直接和变压器的冷地热地相连接。如果连在一起的后果便是带载能力低落并且啸叫声和输出功率的大小呈正比。当输出负载较大,靠近电源功率极限时,开关变压器可能会进入一种不稳定状态:前一周期开关管占空比过大,导通韶光过长, 通过高频变压器传输了过多的能量;直流整流的储能电感本周期内能量未充分开释,经PWM 判断不才一个周期内没有产生令开关管导通的驱动旗子暗记或占空比过小; 开关管在之后的全体周期内为截止状态,或者导通韶光过短;储能电感经由多于一全体周期的能量开释,输出电压低落,开关管下一个周期内的占空比又会大……如此周而复始,使变压器发生较低频率(有规律的间歇性全截止周期或占空比剧烈变革的频率)的振动,发出人耳可以听到的较低频率的声音。同时,输出电压颠簸也会较正常事情增大。当单位韶光内间歇性全截止周期数量达到总周期数的一个可不雅观比例时,乃至会令原来事情在超声频段的变压器振动频率降落,进入人耳可闻的频率范围,发出尖锐的高频“哨叫”。此时的开关变压器事情在严重的超载状态,时候都有烧毁的可能——这便是许多电源烧毁前“惨叫”的由来,相信有些用户曾经有过类似的经历。
空载,或者负载很轻时开关管也有可能涌现间歇性的全截止周期,开关变压器同样事情在超载状态,同样非常危险。针对此问题,可通过在输出端预置假负载的方法办理,但在一些“节省”的或大功率电源中仍偶有发生。当不带载或者负载太轻时, 变压器在事情时所产生的反电势不能很好的被接管。这样变压器就会耦合很多杂波旗子暗记到你的1.2绕组。这个杂波旗子暗记包括了许多不同频谱的互换分量。个中也有许多低频波,当低频波与你变压器的固有振荡频率同等时,那么电路就会形成低频自激。变压器的磁芯不会发生发火声音。我们知道,人的听觉范围是20--20KHZ。以是我们在设计电路时,一样平常都加上选频回路。以滤除低频成份。从你的事理图来看,你最好是在反馈回路上加一个带通电路,以防止低频自激.或者是将你的开关电源做成固定频率的即可。
网络配图
关于PCB走线的其余一些须要把稳的地方总结:
号线必须尽可能地短,并且阔别MOS管漏极走线以防止噪声耦合,旗子暗记地独立布线,尽可能与功率地分离. 光耦地,Vcc地,Y电容地分开,反馈脚电容尽可能靠近IC。
将电源和地平行支配。将敏感及高频的走线只管即便阔别高扰的电源走线。
加宽电源和地的走线来减小电源线和地线之间的阻抗。
最小化由漏极、箝位和变压器构成的环路区域
最小化由次级绕组、输出二极管和输出滤波电容构成的环路区域
增加走线之间的间隔来减小电容耦合的串扰。
2:反馈设计不当
比如带宽设置过宽、相位余量不敷,办理的方法可以试着把带宽压一压,有些设计为了提高瞬态相应,带宽过宽对高频滋扰的印制就会减弱,盲目提高带宽是不可取的。
大功率开关电源短路啸叫
相信大家碰着过这种情形,开关电源在满载后溘然将电源短路测试,有时候会听到电源有啸叫的情形;或者是在设置电流保护时,当电流调试到某一段位,会有啸叫,其啸叫的声音抑扬抑扬,甚是烦人,究其缘故原由紧张为以下:
当输出负载较大,靠近电源功率极限时,开关变压器可能会进入一种不稳定状态:前一周期开关管占空比过大,导通韶光过长,通过高频变压器传输了过多的能量;直流整流的储能电感本周期内能量未充分开释,经PWM 判断,不才一个周期内没有产生令开关管导通的驱动旗子暗记或占空比过小;开关管在之后的全体周期内为截止状态,或者导通韶光过短;储能电感经由多于一全体周期的能量开释,输出电压低落,开关管下一个周期内的占空比又会大…… 如此周而复始,使变压器发生较低频率(有规律的间歇性全截止周期或占空比剧烈变革的频率)的振动,发出人耳可以听到的较低频率的声音. 同时,输出电压颠簸也会较正常事情增大.当单位韶光内间歇性全截止周期数量达到总周期数的一个可不雅观比例时,乃至会令原来事情在超声频段的变压器振动频率降落,进入人耳可闻的频率范围,发出尖锐的高频“啸叫”.此时的开关变压器事情在严重的超载状态,时候都有烧毁的可能——这便是许多电源烧毁前“惨叫”的由来,相信有些用户曾经有过类似的经历. 空载,或者负载很轻时开关管也有可能涌现间歇性的全截止周期,开关变压器同样事情在超载状态,同样非常危险.
针对此问题,可通过在输出端预置假负载的方法办理,但在一些“节省”的或大功率电源中仍偶有发生.当不带载或者负载太轻时,变压器在事情时所产生的反电势不能很好的被接管.这样变压器就会耦合很多杂波旗子暗记到你的1.2绕组.这个杂波旗子暗记包括了许多不同频谱的互换分量.个中也有许多低频波,当低频波与你变压器的固有振荡频率同等时,那么电路就会形成低频自激.变压器的磁芯不会发生发火声音.我们知道,人的听觉范围是20--20KHZ.以是我们在设计电路时,一样平常都加上选频回路.以滤除低频成份.从你的事理图来看,你最好是在反馈回路上加一个带通电路,以防止低频自激.或者是将你的开关电源做成固定频率的即可。
阶跃负载产生的音频噪声
网络配图
有些开关电源在全程变换负载测试时会产生音频噪声。例如通信行业在开关电源的测试标准中,动态负载被定义为周期1 ms、斜率0.1 A/ s,按照25%-50%—_25% 和75%—_50%一75% 两种变革规律的阶跃负载,以正激变换器为例,输出电感的电流由输出脉动电流和阶跃电流两部分组成,脉动电流的频率和开天电源的事情频率相同,一样平常不会产生音频噪声,而阶跃电流的周期和给定阶跃负载的周期同等,当输出电容比较小,阶跃电流dt/di变革率过高,这时也会产生音频噪声办理的方法是增加输出电容,由于电源内部体积的限定,输出电容一样平常也不可能很大,这时也可以试着延缓环路的反应韶光,相应也就减小了电流变革率,从而起到一定的抑制的浸染。但须要把稳的是,延缓环路的反应韶光会使输出电压的过冲或跌落会大很多,这也是一个须要折中考虑的问题。
推举关注
向下滑动查看
名企招聘