损耗太大,开关dvdt过快,EMC过不了……这些都是设计电机驱动时常遇见的问题,而且它们还此消彼长。工程师们一样平常是根据实际运用情形做着取舍。如果有办法在轻载时以忽略不计的开通损耗增加来减小开关速率,而在重载时通过不减小开关速率来减小开通损耗,那就可以达到更空想的驱动效果。
电流源型驱动观点
英飞凌电流源型驱动芯片,一种非常适宜电机驱动方案的产品,将同时实现高效率和低EMI成为可能。它是基于英飞凌无核变压器技能平台的隔离性驱动芯片,能精准地实时掌握开通时的dv/dt。下面我们来仔细地看看它到底有什么分歧凡响之处。

对付门极压控器件IGBT而言,集成驱动芯片利用非常多见。传统的电压源型的驱动芯片是通过调节门极电阻,以电压不变的办法对功率器件门极电荷进行充电。而电流源型的驱动芯片则是通过内部的恒流源(电流值可调)对门极充电,使得在不同负载条件下开通过程dv/dt和di/dt变得更平稳。
图1是电压源型驱动的一个范例开通过程,可以分成三个部分来看:
驱动对Cge充电,此时Vce为母线电压
米勒平台时Vge恒定,驱动对Cgc进行充电,Vce低落
米勒区结束,驱动同时对Cgc和Cge充电,Vce进一步减小进入饱和区
在第二阶段,门极的米勒平台电压的大小和负载电流是干系的,这是由器件的转移特性决定的。电流越大米勒电压也高,充电电流就小,dVce/dt自然慢了,和大电流本身一起导致了开通损耗增加。反过来,小电流时米勒电压低,充电电流大,dVce/dt快,随意马虎产生EMI问题。从电机驱动系统的角度来看,选择得当的电阻来限定过快的dv/dt是最大略有效的方法,纵然会增加重载时的损耗。
而电流源型驱动能做的正是在第二阶段,基于门极电流恒流不受负载电流掌握,来实现相对稳定的dVce/dt。而且由于此恒流值可在开关中调度,这让进一步优化开通损耗成为可能。电流源型驱动芯片的驱动门极电压电流如图2所示,绿色是门极电压,蓝色是门极电流。135ns是固定的预充电阶段,充值电流要根据后级不同的功率器件进行打算设置,准则是尽可能减小开通延时,但此阶段IGBT不能开始开通。在不到25ns的系统延时后,门极进入恒流输出模式,直到完成米勒阶段,恒流的大小一样平常根据须要的dv/dt进行设置,有11个百分比挡位选择。如图3和表1所示。
比拟结果
末了来一起看一下测试结果,我们以FF1200R12IE5模块作为测试工具,选配英飞凌的电流型驱动芯片1EDS20I12SV,同样的IGBT模块也用了普通电压源型的驱动作为比拟,图4是两者PCB的外不雅观。图5是电流源型驱动芯片在不同输出电流下,利用各级掌握所展现出的dv/dt。可以看出即利用同一个等级不作切换,dv/dt的表现依然比较平稳。而不像用单一的门极电阻驱动时,dv/dt变革很大,如图6所示。
而且电流源型的驱动在负载电流变大的情形下,开通损耗的上升速率也较慢,如图7、8是两种驱动器开通损耗随电流的变革趋势。可以看出,在小电流时两者的损耗差不多,都很小。而当电流变大后,电压源型的驱动开通损耗的增加速率远超电流源型驱动。比如在1200A时,用第5级门极电流和用2.2ohm的门极电阻,前者开通损耗至于后者的大约41%。
结论
电流源型驱动抗外界dv/dt能力更高,在系统杂散参数大的情形下更不随意马虎受滋扰。由于是恒流掌握,在各种负载电流下,dv/dt表现得更平稳。而且在兼顾EMC的同时开通损耗得到了非常好的优化。这款芯片的恒流掌握在不同温度下都很稳定,这样又避免了传统IGBT在高温时损耗增加得过快而影响效率。
珠海富士智能株式会社专注于IGBT散热铜底板研发与制造!
http://www.fujichinon.com/