首页 » 互联网 » 有关肥胖最周全的科学论述 (218篇论文综述)(下)_肠道_肥胖

有关肥胖最周全的科学论述 (218篇论文综述)(下)_肠道_肥胖

萌界大人物 2024-12-22 10:52:15 0

扫一扫用手机浏览

文章目录 [+]

有一些研究职员将肠道菌群描述为:与宿主代谢密切干系的附加环境特色143。
只管有了这些证据,但肠道菌群在肥胖中的浸染仍旧是一个相称新颖的观点,须要进一步的研究来确定肠道菌群在肥胖发展和治疗策略中的浸染。

肠道菌群彷佛反响了一个人的生活办法;然而,肠道菌群的变革究竟是肥胖的缘故原由还是结果,还须要更深入的研究。

有关肥胖最周全的科学论述  (218篇论文综述)(下)_肠道_肥胖 互联网

有趣的是,碳水化合物(即纤维)、蛋白质和脂肪的摄入会影响粪便微生物,这一征象解释宏量营养素与微生物之间存在互作144。
只管有了这些数据,但是每个个体的微生物组组成都是独特的,是个体代谢和体重状态的代表性特色144,145。

首创性的研究已经描述了微生物组与肥胖之间的关系。
详细地说,数据显示肥胖小鼠的厚壁菌(Firmicutes)增多,拟杆菌(Bacteroidetes)减少,这表明这些微生物对宿主代谢可能有影响146。
另一项人类研究的研究职员比较了来自体型纤瘦者和肥胖者的微生物样本,证明了上述结果145。

一些研究职员创造,肥胖者从食品中得到的能量增加,并且这些人的粪便样本中普氏菌(Prevotellaceae)和古细菌(Archaea)增多147。
此外,细菌丰度和多样性与肥胖呈负干系,即细菌丰度低的个体会涌现更严重的肥胖、胰岛素抵抗和血脂非常,以及轻度的全身炎症144。
其他的研究也揭示了肠道细菌,如 Akkermansia muciniphila,对内源性大麻素系统以及体重、食品摄入的调节148。

然而,肥胖者的肠道微生物群特色显示出广泛的差异性,这是由多个成分调节的,包括宏量营养素的摄入。
例如,一项人类研究报告了与肥胖干系的肠道菌群存在性别差异149。
此外,其他研究职员也提出,肠道菌群的差异取决于遗传差异150。
然而,肠道菌群的组成已被证明紧张受饮食中营养身分(表 2)的调节151。

考虑到这一点,独特微生物群落(被称为“肠型”)的鉴定及其与康健和疾病的关系表明,肠道菌群在临床常规考验中的运器具有主要浸染。
通过研究这些特性,研究职员可以更好地理解糖和纤维在肠道微生态平衡和失落调中的不同浸染,以及这些浸染如何影响患者预后和微生物组的功能152。

能量回收的差异彷佛是由细菌产生的短链脂肪酸引起的,它提高了消化废物(习气性消化的残余物)的能量利用率153。
同样,短链脂肪酸对宿主的影响也与能量花费有关,它可以调节产热干系基因(如 PPARG 或 UCP2)的表达和增强脂质氧化154。

此外,短链脂肪酸也会影响超重人群的食欲,调控食品摄入干系的短期通路;给结肠输注短链脂肪酸稠浊物,会增加血浆 PYY 水平,这是由上皮 G 蛋白偶联受体(GPR41 和 GPR43)激活所触发的155。
然而,短链脂肪酸含量与粪便中细菌丰度之间的关系仍不清楚。
未来的人类干预研究将有助于确定:微生物的发酵和能源利用对掌握体重和肥胖症的长期效益。

饮食中宏量营养素发酵产生的代谢产物对肥胖及并发症的影响已被广泛研究158。
碳水化合物的摄入被描述为调节肠道菌群的紧张成分159,160。
纤维通过调节食品在胃肠道中的转运、葡萄糖接管和粪便膨胀发挥浸染,从而影响血糖反应和饱腹感旗子暗记161,162。

此外,可发酵伙食纤维在调节肠道菌群中具有关键浸染158。
益生元,如低聚果糖,对肠道菌群的影响已经被一些研究证明,低聚果糖可以调节 Faecali bacteriumprausnitzii和其他细菌的丰度,并与丁酸的产生干系,丁酸可以通过降落下丘脑神经肽Y的表达而减少食品的摄入163。

还有研究调查了富含糖和人工甜味剂的“西方”饮食对肠道菌群组成的影响7。
不幸的是,甜味剂和肥胖者肠道菌群之间的联系仍旧不清楚。
个中一项小鼠研究表明,西方饮食模式更受厚壁菌(Firmicutes)的青睐,并且在小鼠体内,与果糖和甘露糖代谢、糖酵解和糖异生干系的基因表达增加164。

一项对人类的不雅观察研究表明,肥胖人群中也存在小肠细菌的增长的征象,这些肥胖人群的饮食中富含碳水化合物和精制糖,但缺少纤维165。

伙食蛋白质和碳水化合物对肠道菌群的调节浸染改变了蛋白质消化的衍生物166。
这些衍生物通过改变芳香族和支链氨基酸的发酵,以及作为短链脂肪酸的前体,影响能量代谢167。

例如,当肠道中的碳水化合物水平较低时,肠道细菌可以改变发酵的底物168。
这种情形促进了蛋白质的发酵和分解代谢,从而改变肠道 pH 值、转运韶光(大量食品从进入肠道到渗出的韶光)和微生物组168。

在这方面,一项包括肥胖者的试验表明,在高蛋白饮食后,肠道中短链脂肪酸的浓度降落,Roseburia 和 Eubacteriumrectale 的丰度减少,支链氨基酸、苯乙酸和 N-亚硝基化合物的增加,从而可能会对宿主康健产生有害影响169。

而另一篇综述强调了特定氨基酸的抗炎浸染,它们通过肠道菌群产生的色氨酸衍生物来增强肠道的樊篱功能170。
此外,该综述的作者还宣布了 GLP1 对宿主代谢的调节浸染,以及由色氨酸的肠道菌群代谢产物吲哚引起的饱足感170。

此外,其他研究职员认为,除了能量平衡外,其他成分也会改变伙食脂肪摄入对体重增加的影响171。
高脂饮食可以通过抗菌浸染影响肠道菌群,匆匆使微生物组失落调,这种失落调与肥胖导致的全身匆匆炎症状态干系171。

对康健人进行的横断面研究创造,拟杆菌(Bacteroidetes)和放线菌(Actinobacteria)与习气性饮食中的脂肪摄入呈正干系172。
此外,该研究还揭示了,与体重指数(BMI)干系的微生物也与饱和脂肪酸的热量摄入干系172。

另一项调查同卵双胞胎脂肪摄入质量的研究创造,单不饱和脂肪酸与双歧杆菌(Bifidobacterium)和拟杆菌(Bacteroidetes)的丰度正干系;n-3 多不饱和脂肪酸与乳酸杆菌(Lactobacillus)之间存在正干系关系;而 n-6 多不饱和脂肪酸与双歧杆菌(Bifidobacterium)之间则负干系173。

然而,一些研究职员认为,在饮食中添加益生菌可以减轻伙食脂肪对体重坚持和脂肪积累的不利影响174,175。

肥胖的综合研究

精准营养与精准医学已成为体重坚持与肥胖管理的主要课题。
在精准营养与精准医学中,个性化不仅包括代谢表型、食品偏好、临床病史或生活办法,还包括新兴的个性化标准,个中基因型和肠道菌群的组成是定制疾病治疗方案的根本,特殊是代谢紊乱。

因此,越来越多的研究职员开始对饮食模式感兴趣,开始研究食品营养素、肠道菌群的组成和遗传背景之间繁芜的相互浸染对肥胖的影响176。

一项对照饮食试验将康健人分为两组,一组食用高脂肪低纤维饮食,另一组食用低脂肪高纤维饮食,在饮食干预 24 小时后,研究职员创造参与者的肠道菌群组成发生了变革,这些变革在研究的 10 天内保持稳定172。

研究职员还报告了长期饮食模式和菌群之间的关系。
详细地,他们宣布了蛋白质、动物脂肪与拟杆菌(Bacteroidetes),碳水化合物与普氏菌(Prevotella)之间的关系172。

同样,其他营养干预研究也创造,大鼠高脂高糖或低脂高糖饮食后,细菌的多样性低落。
这些饮食与肠道炎症的增加、迷走神经的肠-脑联系改变有关,从而使得身体脂肪沉积增加177。

一些研究职员强调了肠道微生物种群综合剖析和代谢组学剖析的运用前景,这些剖析可以客不雅观评估康健饮食模式的可循性,并帮助阐明这些模式(如地中海饮食模式)中的明确饮食身分,以及它们在心脏代谢紊乱发展的繁芜相互浸染中可能的影响178。

例如,一项试验报告了肥胖者肠道菌群组成与康健饮食状况干系的差异179。
更详细地说,那些饮食摄入更康健的人,肠道微生物的丰度更高,炎症标志物的浓度更低179。
同样,一些研究职员强调须要进一步调查,以确定细菌对特定饮食干预的反应,以及对宿主代谢的有益影响180,181。

然而,这须要新的代谢标志物或新技能,来帮助阐明特定饮食的营养摄入,以制订更详细的营养评估,并确定它们如何影响肠道菌群和遗传之间的互作。
这样的技能将使我们能够更准确地确定:宏量营养素对与肥胖发展有关的代谢通路和内分泌旗子暗记的特定影响。

事实上,一些研究已经证明了,宿主基因型和肠道菌群与内脏脂肪的关系39,182。
一个研究团队创造低热量高蛋白饮食对 BMI 超重组中有双歧杆菌干系 LCT 基因型变异(LCT 编码乳糖酶)的个体有益150。

在这些研究的根本上,数据表明饮食成分之间的相互浸染与肥胖中创造的代谢损伤有关,如宏量营养素分布、肠道菌群组成和遗传背景25。
对个体特色和肠道菌群代谢物干系敏感性的整体研究有助于制订新的营养评估策略,以提高肥胖的预防和治疗效果183。

对这一课题的进一步研究应旨在确定:依赖于特定肠型、人体康健代谢产物、能量平衡和体重掌握158的筛选和检测工具,以增强预防和治疗肥胖的临床实践的个性化184。
由于研究的终极目的是发展完善的精准营养咨询,以是须要开展进一步的研究,以更好地理解肥胖发展过程中所涉及的繁芜相互浸染。

这项研究在进行之前须要在整合所有的个体信息以及生物学数据,这些个体信息包括:生活办法及环境、文化、临床病史(包括药物、过敏和不耐受的不良影响)、体力活动水平、就寝及饮食模式、食品偏好和行为成分(即暴露组);这些生物学数据包括:昼夜节律、遗传学、表不雅观遗传学、亚基因组学和代谢组学。

结论

在理解体脂沉积和体重稳定性方面,宏量营养素摄入分布和伙食组成正成为主要的研究领域。
科学进展表明,为了对抗肥胖症盛行,科学家不仅须要考虑碳水化合物、蛋白质和脂质的分外贡献,还须要考虑单一氨基酸、脂肪酸和各种碳水化合物衍生的分子,以及它们与遗传背景和肠道菌群的相互浸染——这是精准营养和医学的根本。

脂肪和糖,作为紧张的产能营养素,它们的摄入被认为是肥胖症盛行的紧张驱出发分,由于两者都有助于能量的供应。
然而,由于它们参与到共同的、与能量稳态干系的代谢通路51,想要从现有证据中阐明每种宏量营养素对肥胖的单独贡献是一项寻衅。

这一问题乃至比想得更加繁芜,由于能量代谢方面的繁芜相互浸染,以及每个个体综合代谢的灵巧性,使得人类能够根据自身对营养素的可用性和须要,合理利用不同来源的能量62。
换言之,很难说脂肪比糖更有害,由于整体的能量摄入与花费,可能比使体重增加的特定能量来源更主要。

然而,特定脂肪酸和糖的浸染可能阐明了能量效率的一些差异,而蛋白质彷佛可以减少食欲和促进产热,对体重坚持有积极浸染56。

过度的体重和脂肪组织的积累依赖于能量平衡,摄入的宏量营养素产能长期高于能量花费就会导致上述征象,而这些又受到神经内分泌的调节。
由于涉及碳水化合物、脂质和蛋白质利用的能量代谢相互浸染非常繁芜,这使得阐明这些宏量营养素对能量需求和细胞需求的详细贡献又繁芜化了。

此外,除了影响碳水化合物(葡萄糖)利用、脂质转换(脂肪天生和脂解)、蛋白质引起的产热与脂肪细胞生理的中间代谢通路外,能量平衡还通过繁芜的相互关联的调节过程来坚持,这些调节过程涉及神经内分泌旗子暗记介导的食欲和/或饱足掌握。

常常食用一些单糖,如葡萄糖和果糖,以及摄入饱和脂肪和一些特定的脂肪酸,彷佛是导致肥胖的紧张缘故原由1。
伙食纤维的饱腹特性和伙食蛋白质的匆匆饱特性有助于长期干预中的体重坚持和能量摄入掌握。

这种正相互浸染可能是由无脂肪组织和静息代谢的坚持所引起的,但过去 10 年的证据表明,特定的脂肪酸和氨基酸可能参与了肥胖过程,这可能涉及到 FTO 和其它基因的某些多态性100。
然而,对付是否存在宏量营养素与 FTO 变异体的相互浸染还没有达成普遍共识109,因此须要进一步研究。

总的来说,目前的证据表明,能量过剩是导致超重和肥胖的紧张缘故原由。
假设来自不同宏量营养素的热量相等,那么精制糖和一些脂肪在体重增加中过程中是否存在互补浸染,这仍旧存在争议。

与基因组成和肠道菌群干系的个体特色,可以阐明部分个体间差异:宏量营养素的摄入影响身高体重比和脂肪质量150。
事实上,须要进一步的综合研究来理解个体的宏量营养素代谢网络及能量热力学的机制,并根据个体自身的精准营养标准来设计饮食策略。

参考文献:

1.Bluher, M. Obesity: global epidemiology andpathogenesis. Nat. Rev. Endocrinol. 15, 288–298 (2019).

2. Gonzalez-Muniesa, P. et al. Obesity. Nat.Rev. Dis. Primers 3, 17034 (2017).

3.Charakida, M. et al. Lifelong patterns ofBMI and cardiovascular phenotype in individuals aged 60–64 years in the 1946British birth cohort study: an epidemiological study. Lancet DiabetesEndocrinol. 2, 648–654 (2014).

4.Bell, J. A. et al. Associations of body massand fat indexes with cardiometabolic traits. J. Am. Coll. Cardiol. 72,3142–3154 (2018).

5.Schwingshackl, L. & Hoffmann, G. Dietquality as assessed by the healthy eating index, the alternate healthy eatingindex, the dietary approaches to stop hypertension score, and health outcomes:a systematic review and meta-analysis of cohort studies. J. Acad. Nutr. Diet.115, 780–800.e5 (2015).

6.Malik, V. S., Willett, W. C. & Hu, F. B.Global obesity: trends, risk factors and policy implications. Nat. Rev.Endocrinol. 9, 13–27 (2013).

7.Vandevijvere, S., Chow, C. C., Hall, K. D.,Umali, E. & Swinburn, B. A. Increased food energy supply as a major driverof the obesity epidemic: a global analysis. Bull. World Health Organ. 93,446–456 (2015).

8.Rico-Campa, A. et al. Association betweenconsumption of ultra-processed foods and all cause mortality: SUN prospectivecohort study. BMJ 365, l1949 (2019). The main finding of this study is that ahigher consumption of ultra-processed foods (>4 servings daily) wasindependently associated with a 62% increased hazard for all-cause mortality.

9.Guthold, R., Stevens, G. A., Riley, L. M.& Bull, F. C. Worldwide trends in insufficient physical activity from 2001to 2016: a pooled analysis of 358 population-based surveys with 1.9 millionparticipants. Lancet Glob. Health 6, e1077–e1086 (2018). This study analysesdata from 358 surveys across 168 countries, including 1.9 million participants,and shows an increased prevalence of insufficient physical activity, which doesnot meet the 2025 target meaning a higher risk of morbidity and mortality.

10.Compernolle, S. et al. Mediating role ofenergy-balance related behaviors in the association of neighborhoodsocio-economic status and residential area density with BMI: the SPOTLIGHTstudy. Prev. Med. 86, 84–91 (2016).

11.Westerterp, K. R. & Speakman, J. R.Physical activity energy expenditure has not declined since the 1980s andmatches energy expenditures of wild mammals. Int. J. Obes. 32, 1256–1263(2008).

12.Hand, G. A., Shook, R. P., Hill, J. O.,Giacobbi, P. R. & Blair, S. N. Energy flux: staying in energy balance at ahigh level is necessary to prevent weight gain for most people. Expert. Rev.Endocrinol. Metab. 10, 599–605 (2015).

13.Manore, M. M., Larson-Meyer, D. E.,Lindsay, A. R., Hongu, N. & Houtkooper, L. Dynamic energy balance: anintegrated framework for discussing diet and physical activity in obesityprevention — is it more than eating less and exercising more? Nutrients 9, E905(2017). Five main issues are highlighted in this review: the meaning of dynamicversus static energy balance; the role of physical activity in weight control;the role of physical activity in appetite regulation; the concept of energyflux; and the integration of dynamic energy balance into obesity preventionprogrammes.

14.Romijn, J. A. et al. Regulation ofendogenous fat and carbohydrate metabolism in relation to exercise intensityand duration. Am. J. Physiol. 265, E380–E391 (1993).

15.Rarick, K. R. et al. Energy flux, more sothan energy balance, protein intake, or fitness level, influences insulin-likegrowth factor-I system responses during 7 days of increased physical activity.J. Appl. Physiol. 103, 1613–1621 (2007).

16.Beaulieu, K., Hopkins, M., Blundell, J.& Finlayson, G. Impact of physical activity level and dietary fat contenton passive overconsumption of energy in non-obese adults. Int. J. Behav. Nutr.Phys. Act. 14, 14 (2017).

17.Finucane, M. M. et al. National, regional,and global trends in body-mass index since 1980: systematic analysis of healthexamination surveys and epidemiological studies with 960 country-years and 9.1million participants. Lancet 377, 557–567 (2011).

18.San-Cristobal, R. et al. Analysis ofdietary pattern impact on weight status for personalised nutrition throughon-line advice: the Food4Me Spanish cohort. Nutrients 7, 9523–9537 (2015).

19.Anand, S. S. et al. Food consumption andits impact on cardiovascular disease: importance of solutions focused on theglobalized food system: a report from the workshop convened by the World HeartFederation. J. Am. Coll. Cardiol. 66, 1590–1614 (2015).

20.Huang, Y. et al. Adoption and design ofemerging dietary policies to improve cardiometabolic health in the US. Curr.Atheroscler. Rep. 20, 25 (2018).

21.Mozaffarian, D., Angell, S. Y., Lang, T.& Rivera, J. A. Role of government policy in nutrition — barriers to andopportunities for healthier eating. BMJ 361, k2426 (2018). The authors reviewthe different strategies governments can use to improve nutrition and health inorder to tackle the current nutritional problems, with a focus on obesity andcomorbidities.

22.Goodpaster, B. H. et al. Effects of dietand physical activity interventions on weight loss and cardiometabolic riskfactors in severely obese adults: a randomized trial. JAMA 304, 1795–1802 (2010).

23.Speakman, J. R. & Westerterp, K. R.Associations between energy demands, physical activity, and body composition inadult humans between 18 and 96y of age. Am. J. Clin. Nutr. 92, 826–834 (2010).

24.Navas-Carretero, S. et al. Higher vegetableprotein consumption, assessed by an isoenergetic macronutrient exchange model,is associated with a lower presence of overweight and obesity in the web-basedFood4me European study. Int. J. Food Sci. Nutr. 70, 240–253 (2019).

25.Cuevas-Sierra, A., Ramos-Lopez, O.,Riezu-Boj, J. I., Milagro, F. I. & Martinez, J. A. Diet, gut microbiota,and obesity: links with host genetics and epigenetics and potentialapplications. Adv. Nutr. 10, S17–S30 (2019).

26.Lavie, C. J., De Schutter, A. & Milani,R. V. Healthy obese versus unhealthy lean: the obesity paradox. Nat. Rev.Endocrinol. 11, 55–62 (2015).

27.Chaput, J. P. & Tremblay, A. Theglucostatic theory of appetite control and the risk of obesity and diabetes.Int. J. Obes. 33, 46–53 (2009).

28.Mayer, J. Glucostatic mechanism ofregulation of food intake. N. Engl. J. Med. 249, 13–16 (1953).

29.Melanson, K. J., Westerterp-Plantenga, M.S., Campfield, L. A. & Saris, W. H. Blood glucose and meal patterns intime-blinded males, after aspartame, carbohydrate, and fat consumption, inrelation to sweetness perception. Br. J. Nutr. 82, 437–446 (1999).

30.Augustin, L. S. et al. Glycemic index,glycemic load and glycemic response: an international scientific consensussummit from the International Carbohydrate Quality Consortium (ICQC). Nutr.Metab. Cardiovasc. Dis. 25, 795–815 (2015).

31.Santiago, S. et al. Carbohydrate quality,weight change and incident obesity in a Mediterranean cohort: the SUN project.Eur. J. Clin. Nutr. 69, 297–302 (2015).

32.Smith, J. D. et al. Changes in intake ofprotein foods, carbohydrate amount and quality, and long-term weight change:results from 3 prospective cohorts. Am. J. Clin. Nutr. 101, 1216–1224 (2015).

33.Reynolds, A. et al. Carbohydrate qualityand human health: a series of systematic reviews and meta-analyses. Lancet 393,434–445 (2019).

34.Willett, W. C. Dietary fat and obesity: anunconvincing relation. Am. J. Clin. Nutr. 68, 1149–1150 (1998).

35.Mellinkoff, S. M., Frankland, M., Boyle, D.& Greipel, M. Relationship between serum amino acid concentration andfluctuations in appetite. J. Appl. Physiol. 8, 535–538 (1956).

36.Drummen, M., Tischmann, L., Gatta-Cherifi,B., Adam, T. & Westerterp-Plantenga, M. Dietary protein and energy balancein relation to obesity and co-morbidities. Front. Endocrinol. 9, 443 (2018).

37.Woods, S. C., Seeley, R. J., Porte, D. Jr.& Schwartz, M. W. Signals that regulate food intake and energy homeostasis.Science 280, 1378–1383 (1998).

38.Karhunen, L. J., Juvonen, K. R., Huotari,A., Purhonen, A. K. & Herzig, K. H. Effect of protein, fat, carbohydrateand fibre on gastrointestinal peptide release in humans. Regul. Pept. 149,70–78 (2008).

39.Beaumont, M. et al. Heritable components ofthe human fecal microbiome are associated with visceral fat. Genome Biol. 17,189 (2016).

40.Bray, G. A. Static theories in a dynamicworld: a glucodynamic theory of food intake. Obes. Res. 4, 489–492 (1996).

41.Boule, N. G. et al. Glucose homeostasispredicts weight gain: prospective and clinical evidence. Diabetes Metab. Res.Rev. 24, 123–129 (2008).

42.Kennedy, G. C. The development with age ofhypothalamic restraint upon the appetite of the rat. J. Endocrinol. 16, 9–17 (1957).

43.Zhang, Y. et al. Positional cloning of themouse obese gene and its human homologue. Nature 372, 425–432 (1994).

44.Martinez, J. A. Body-weight regulation:causes of obesity. Proc. Nutr. Soc. 59, 337–345 (2000).

45.Hopkins, M. & Blundell, J. E. inAppetite and Food Intake: Central Control (ed. Harris, R. B. S.) 259–276 (CRCPress/Taylor & Francis, 2017).

46.Farias, M. M., Cuevas, A. M. &Rodriguez, F. Set-point theory and obesity. Metab. Syndr. Relat. Disord. 9,85–89 (2011).

47.Hall, K. D. & Guo, J. Obesityenergetics: body weight regulation and the effects of diet composition.Gastroenterology 152, 1718–1727.e3 (2017).

48.Mendonca, R. D. et al. Ultraprocessed foodconsumption and risk of overweight and obesity: the University of NavarraFollow-Up (SUN) cohort study. Am. J. Clin. Nutr. 104, 1433–1440 (2016).

49.Berthoud, H. R., Lenard, N. R. & Shin,A. C. Food reward, hyperphagia, and obesity. Am. J. Physiol. Regul. Integr.Comp. Physiol 300, R1266–R1277 (2011).

50.Berthoud, H. R. & Zheng, H. Modulationof taste responsiveness and food preference by obesity and weight loss.Physiol. Behav. 107, 527–532 (2012).

51.Francis, H. M. & Stevenson, R. J.Higher reported saturated fat and refined sugar intake is associated withreduced hippocampal-dependent memory and sensitivity to interoceptive signals.Behav. Neurosci. 125, 943–955 (2011).

52.Ochoa, M., Lalles, J. P., Malbert, C. H.& Val-Laillet, D. Dietary sugars: their detection by the gut-brain axis andtheir peripheral and central effects in health and diseases. Eur. J. Nutr. 54,1–24 (2015).

53.Lowette, K., Roosen, L., Tack, J. &Vanden Berghe, P. Effects of high-fructose diets on central appetite signalingand cognitive function. Front. Nutr. 2, 5 (2015).

54.Page, K. A. et al. Effects of fructose vsglucose on regional cerebral blood flow in brain regions involved with appetiteand reward pathways. JAMA 309, 63–70 (2013).

55.Witkamp, R. F. The role of fatty acids andtheir endocannabinoid-like derivatives in the molecular regulation of appetite.Mol. Asp. Med. 64, 45–67 (2018).

56.Veldhorst, M. A., Westerterp, K. R. &Westerterp-Plantenga, M. S. Gluconeogenesis and protein-induced satiety. Br. J.Nutr. 107, 595–600 (2012).

57.Mirzaei, K. et al. Variants in glucose- andcircadian rhythm-related genes affect the response of energy expenditure toweight-loss diets: the POUNDS LOST Trial. Am. J. Clin. Nutr. 99, 392–399(2014).

58.Oosterman, J. E., Kalsbeek, A., la Fleur,S. E. & Belsham, D. D. Impact of nutrients on circadian rhythmicity. Am. J.Physiol. Regul. Integr. Comp. Physiol. 308, R337–R350 (2015).

59.Yon, M. A., Mauger, S. L. & Pickavance,L. C. Relationships between dietary macronutrients and adult neurogenesis in theregulation of energy metabolism. Br. J. Nutr. 109, 1573–1589 (2013).

60.Seeley, R. J. & Woods, S. C. Monitoringof stored and available fuel by the CNS: implications for obesity. Nat. Rev.Neurosci. 4, 901–909 (2003).

61.Westerterp-Plantenga, M. S. Sleep,circadian rhythm and body weight: parallel developments. Proc. Nutr. Soc. 75,431–439 (2016).

62.Goodpaster, B. H. & Sparks, L. M.Metabolic flexibility in health and disease. Cell Metab. 25, 1027–1036 (2017).

63.Battaglia, G. M., Zheng, D., Hickner, R. C.& Houmard, J. A. Effect of exercise training on metabolic flexibility inresponse to a high-fat diet in obese individuals. Am. J. Physiol. Endocrinol.Metab. 303, E1440–E1445 (2012).

64.Li, T. & Chiang, J. Y. Bile acidsignaling in metabolic disease and drug therapy. Pharmacol. Rev. 66, 948–983(2014).

65.Shin, H. S., Ingram, J. R., McGill, A. T.& Poppitt, S. D. Lipids, CHOs, proteins: can all macronutrients put a‘brake’ on eating? Physiol. Behav. 120, 114–123 (2013).

66.Ronveaux, C. C., Tome, D. & Raybould,H. E. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulateglucose metabolism and food intake through vagal afferent neuron signaling. J.Nutr. 145, 672–680 (2015).

67.Efeyan, A., Comb, W. C. & Sabatini, D.M. Nutrient-sensing mechanisms and pathways. Nature 517, 302–310 (2015).

68.van Baak, M. A. & Astrup, A.Consumption of sugars and body weight. Obes. Rev. 10, 9–23 (2009).

69.Du, H. & Feskens, E. Dietarydeterminants of obesity. Acta Cardiol. 65, 377–386 (2010).

70.Bhardwaj, B., O’Keefe, E. L. & O’Keefe,J. H. Death by carbs: added sugars and refined carbohydrates cause diabetes andcardiovascular disease in Asian Indians. Mo. Med. 113, 395–400 (2016).

71.Saris, W. H. et al. Randomized controlledtrial of changes in dietary carbohydrate/fat ratio and simple vs complexcarbohydrates on body weight and blood lipids: the CARMEN study. Thecarbohydrate ratio management in European national diets. Int. J. Obes. Relat.Metab. Disord. 24, 1310–1318 (2000).

72.Brehm, B. J., Seeley, R. J., Daniels, S. R.& D’Alessio, D. A. A randomized trial comparing a very low carbohydratediet and a calorie-restricted low fat diet on body weight and cardiovascularrisk factors in healthy women. J. Clin. Endocrinol. Metab. 88, 1617–1623(2003).

73.Forouhi, N. G., Krauss, R. M., Taubes, G.& Willett, W. Dietary fat and cardiometabolic health: evidence,controversies, and consensus for guidance. BMJ 361, k2139 (2018).

74.Aller, E. E., Abete, I., Astrup, A.,Martinez, J. A. & van Baak, M. A. Starches, sugars and obesity. Nutrients3, 341–369 (2011).

75.Malik, V. S., Popkin, B. M., Bray, G. A.,Despres, J. P. & Hu, F. B. Sugar-sweetened beverages, obesity, type 2diabetes mellitus, and cardiovascular disease risk. Circulation 121, 1356–1364(2010).

76.Stanhope, K. L. Sugar consumption,metabolic disease and obesity: the state of the controversy. Crit. Rev. Clin.Lab. Sci. 53, 52–67 (2016).

77.Johnson, R. J., Sanchez-Lozada, L. G.,Andrews, P. & Lanaspa, M. A. Perspective: a historical and scientificperspective of sugar and its relation with obesity and diabetes. Adv. Nutr. 8,412–422 (2017).

78.Bray, G. A. & Popkin, B. M. Dietary fatintake does affect obesity! Am. J. Clin. Nutr. 68, 1157–1173 (1998).

79.Lawrence, G. D. Dietary fats and health:dietary recommendations in the context of scientific evidence. Adv. Nutr. 4,294–302 (2013).

80.Gulati, S. & Misra, A. Abdominalobesity and type 2 diabetes in Asian Indians: dietary strategies includingedible oils, cooking practices and sugar intake. Eur. J. Clin. Nutr. 71,850–857 (2017).

81.Bes-Rastrollo, M. et al. Olive oilconsumption and weight change: the SUN prospective cohort study. Lipids 41,249–256 (2006).

82.Beulen, Y. et al. Quality of dietary fatintake and body weight and obesity in a Mediterranean population: secondaryanalyses within the PREDIMED trial. Nutrients 10, 2011 (2018).

83.Martinez-Gonzalez, M. A. &Bes-Rastrollo, M. Nut consumption, weight gain and obesity: epidemiologicalevidence. Nutr. Metab. Cardiovasc. Dis. 21, S40–S45 (2011).

84.Martinez, K. B., Leone, V. & Chang, E.B. Western diets, gut dysbiosis, and metabolic diseases: are they linked? GutMicrobes 8, 130–142 (2017).

85.Veldhorst, M. A., Westerterp, K. R., vanVught, A. J. & Westerterp-Plantenga, M. S. Presence or absence ofcarbohydrates and the proportion of fat in a high-protein diet affect appetitesuppression but not energy expenditure in normal-weight human subjects fed inenergy balance. Br. J. Nutr. 104, 1395–1405 (2010).

86.Vergnaud, A. C. et al. Meat consumption andprospective weight change in participants of the EPIC-PANACEA study. Am. J.Clin. Nutr. 92, 398–407 (2010).

87.Fogelholm, M. et al. PREVIEW: prevention ofdiabetes through lifestyle intervention and population studies in Europe andaround the world. Design, methods, and baseline participant description of anadult cohort enrolled into a three-year randomised clinical trial. Nutrients 9,632 (2017).

88.Feskens, E. J., Sluik, D. & Du, H. Theassociation between diet and obesity in specific European cohorts: DiOGenes andEPIC-PANACEA. Curr. Obes. Rep. 3, 67–78 (2014).

89.Handjieva-Darlenska, T. et al. Clinicalcorrelates of weight loss and attrition during a 10-week dietary interventionstudy: results from the NUGENOB project. Obes. Facts 5, 928–936 (2012).

90.Abete, I., Astrup, A., Martinez, J. A.,Thorsdottir, I. & Zulet, M. A. Obesity and the metabolic syndrome: role ofdifferent dietary macronutrient distribution patterns and specific nutritionalcomponents on weight loss and maintenance. Nutr. Rev. 68, 214–231 (2010).

91.Larsen, T. M. et al. Diets with high or lowprotein content and glycemic index for weight-loss maintenance. N. Engl. J.Med. 363, 2102–2113 (2010). This is the main article from the DIOGenes study,which was a large European study, and results indicate that a modest increasein protein content and a modest reduction in the glycaemic index of diets leadsto an improvement in study completion and maintenance of weight loss.

92.van Baak, M. A. & Mariman, E. C. M.Mechanisms of weight regain after weight loss — the role of adipose tissue.Nat. Rev. Endocrinol. 15, 274–287 (2019). In this review, the authors try toshow how weight loss-induced variations in cellular stress, extracellularmatrix remodelling, inflammatory responses, adipokine secretion and lipolysisare associated with the weight regained after successful weight loss. Weightregain could, at least in part, depend on these factors.

93.Mozaffarian, D. Food and weight gain: timeto end our fear of fat. Lancet Diabetes Endocrinol. 4, 633–635 (2016).

94.Bray, G. A. et al. The influence ofdifferent fats and fatty acids on obesity, insulin resistance and inflammation.J. Nutr. 132, 2488–2491 (2002).

95.Ho, K. K. Y. Diet-induced thermogenesis:fake friend or foe? J. Endocrinol. 238, R185–R191 (2018).

96.Westerterp-Plantenga, M. S. Effects ofenergy density of daily food intake on long-term energy intake. Physiol. Behav.81, 765–771 (2004).

97.Astrup, A. & Tremblay, A. inIntroduction to Human Nutrition Ch. 3 (eds Gibney, M. J., Lanham-New, S. A.,Cassidy, A. & Vorster, H. H.) 31–48 (John Wiley & Sons, 2009).

98.Ferguson, L. R. et al. Guide and positionof the International Society of Nutrigenetics/Nutrigenomics on personalisednutrition: part 1 — fields of precision nutrition. J. Nutrigenet. Nutrigenomics9, 12–27 (2016).

99.Kohlmeier, M. et al. Guide and position ofthe International Society of Nutrigenetics/Nutrigenomics on personalizednutrition: part 2 — ethics, challenges and endeavors of precision nutrition. J.Nutrigenet. Nutrigenomics 9, 28–46 (2016).

100.Martinez, J. A., Navas-Carretero, S.,Saris, W. H. & Astrup, A. Personalized weight loss strategies — the role ofmacronutrient distribution. Nat. Rev. Endocrinol. 10, 749–760 (2014). Thisreview discusses all the available systematic reviews and meta-analyses, andsummarizes the main results of randomized controlled intervention trials thatassess the influence of macronutrient composition on weight management. One ofthe key points is that experts generally agree that weight-loss strategiesshould aim to achieve long-term maintenance of a healthy body weight.

101.El-Sayed Moustafa, J. S. & Froguel, P.From obesity genetics to the future of personalized obesity therapy. Nat. Rev.Endocrinol. 9, 402–413 (2013).

102.Tessier, F., Fontaine-Bisson, B.,Lefebvre, J. F., El-Sohemy, A. & Roy-Gagnon, M. H. Investigating gene-geneand gene-environment interactions in the association between overnutrition andobesity-related phenotypes. Front. Genet. 10, 151 (2019).

103.Goni, L., Cuervo, M., Milagro, F. I. &Martinez, J. A. A genetic risk tool for obesity predisposition assessment andpersonalized nutrition implementation based on macronutrient intake. GenesNutr. 10, 445 (2015).

104.Torkamani, A., Wineinger, N. E. &Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat.Rev. Genet. 19, 581–590 (2018). This review tries to rationalize how theinitial promising results of DNA testing regarding personalized medicine hasresulted in no or little effect of associations with diseases. Nevertheless,efforts have begun to demonstrate the utility of polygenic risk profiling toidentify groups of individuals who could benefit from the knowledge of theirprobabilistic susceptibility to disease.

105.Dougkas, A., Yaqoob, P., Givens, D. I.,Reynolds, C. K. & Minihane, A. M. The impact of obesity-related SNP onappetite and energy intake. Br. J. Nutr. 110, 1151–1156 (2013).

106.Melhorn, S. J. et al. FTO genotype impactsfood intake and corticolimbic activation. Am. J. Clin. Nutr. 107, 145–154(2018).

107.Livingstone, K. M. et al. Associationsbetween FTO genotype and total energy and macronutrient intake in adults: asystematic review and meta-analysis. Obes. Rev. 16, 666–678 (2015).

108.Qi, L., Kraft, P., Hunter, D. J. & Hu,F. B. The common obesity variant near MC4R gene is associated with higherintakes of total energy and dietary fat, weight change and diabetes risk inwomen. Hum. Mol. Genet. 17, 3502–3508 (2008).

109.Drabsch, T., Gatzemeier, J., Pfadenhauer,L., Hauner, H. & Holzapfel, C. Associations between single nucleotidepolymorphisms and total energy, carbohydrate, and fat intakes: a systematicreview. Adv. Nutr. 9, 425–453 (2018).

110.Martinez, J. A. et al. Obesity risk isassociated with carbohydrate intake in women carrying the Gln27Glubeta2-adrenoceptor polymorphism. J. Nutr. 133, 2549–2554 (2003).

111.Marti, A., Corbalan, M. S.,Martinez-Gonzalez, M. A., Forga, L. & Martinez, J. A. CHO intake altersobesity risk associated with Pro12Ala polymorphism of PPARgamma gene. J.Physiol. Biochem. 58, 219–220 (2002).

112.Santos, J. L. et al. Genotype-by-nutrientinteractions assessed in European obese women. A case-only study. Eur. J. Nutr.45, 454–462 (2006).

113.Qi, Q. et al. Sugar-sweetened beveragesand genetic risk of obesity. N. Engl. J. Med. 367, 1387–1396 (2012).

114.Rukh, G., Ericson, U.,Andersson-Assarsson, J., Orho-Melander, M. & Sonestedt, E. Dietary starchintake modifies the relation between copy number variation in the salivaryamylase gene and BMI. Am. J. Clin. Nutr. 106, 256–262 (2017).

115.Falchi, M. et al. Low copy number of thesalivary amylase gene predisposes to obesity. Nat. Genet. 46, 492–497 (2014).

116.Cyrus, C. et al. Analysis of the impact ofcommon polymorphisms of the FTO and MC4R genes with the risk of severe obesityin Saudi Arabian population. Genet. Test. Mol. Biomarkers 22, 170–177 (2018).

117.Labayen, I. et al. Dietary fat intakemodifies the influence of the FTO rs9939609 polymorphism on adiposity inadolescents: the HELENA cross-sectional study. Nutr. Metab. Cardiovasc. Dis.26, 937–943 (2016).

118.Corella, D. et al. APOA5 gene variationmodulates the effects of dietary fat intake on body mass index and obesity riskin the Framingham Heart Study. J. Mol. Med. 85, 119–128 (2007).

119.Sanchez-Moreno, C. et al. APOA5 genevariation interacts with dietary fat intake to modulate obesity and circulatingtriglycerides in a Mediterranean population. J. Nutr. 141, 380–385 (2011).

120.Memisoglu, A. et al. Interaction between aperoxisome proliferator-activated receptor gamma gene polymorphism and dietaryfat intake in relation to body mass. Hum. Mol. Genet. 12, 2923–2929 (2003).

121.Rosado, E. L., Bressan, J., Martinez, J.A. & Marques-Lopes, I. Interactions of the PPARgamma2 polymorphism with fatintake affecting energy metabolism and nutritional outcomes in obese women.Ann. Nutr. Metab. 57, 242–250 (2010).

122.Garaulet, M., Smith, C. E.,Hernandez-Gonzalez, T., Lee, Y. C. & Ordovas, J. M. PPARgamma Pro12Alainteracts with fat intake for obesity and weight loss in a behaviouraltreatment based on the Mediterranean diet. Mol. Nutr. Food Res. 55, 1771–1779 (2011).

123.Phillips, C. M. et al. High dietarysaturated fat intake accentuates obesity risk associated with the fat mass andobesity-associated gene in adults. J. Nutr. 142, 824–831 (2012).

124.Lai, C. Q. et al. Epigenomics andmetabolomics reveal the mechanism of the APOA2-saturated fat intake interactionaffecting obesity. Am. J. Clin. Nutr. 108, 188–200 (2018).

125.Corella, D. et al. Association between theAPOA2 promoter polymorphism and body weight in Mediterranean and Asianpopulations: replication of a gene-saturated fat interaction. Int. J. Obes. 35,666–675 (2011).

126.Celis-Morales, C. A. et al. Dietary fatand total energy intake modifies the association of genetic profile risk scoreon obesity: evidence from 48,170 UK Biobank participants. Int. J. Obes. 41,1761–1768 (2017). The aim of this cross-sectional study is to ascertain if avalidated genetic profile risk score for obesity associated to body mass indexor waist circumference is influenced by macronutrient intake; the authorsstudied a sample of 48,170 participants and suggest that body weight mightbenefit from a reduced fat and energy intake in those individuals with highergenetic risk scores.

127.Casas-Agustench, P. et al. Saturated fatintake modulates the association between an obesity genetic risk score and bodymass index in two US populations. J. Acad. Nutr. Diet. 114, 1954–1966 (2014).

128.Qi, Q. et al. FTO genetic variants,dietary intake and body mass index: insights from 177,330 individuals. Hum.Mol. Genet. 23, 6961–6972 (2014).

129.Pei, Y. F. et al. Meta-analysis ofgenome-wide association data identifies novel susceptibility loci for obesity.Hum. Mol. Genet. 23, 820–830 (2014).

130.Suhre, K. et al. Connecting genetic riskto disease end points through the human blood plasma proteome. Nat. Commun. 8,14357 (2017).

131.Hooton, H. et al. Dietary factors impacton the association between CTSS variants and obesity related traits. PLoS One7, e40394 (2012).

132.Merritt, D. C., Jamnik, J. &El-Sohemy, A. FTO genotype, dietary protein intake, and body weight in amultiethnic population of young adults: a cross-sectional study. Genes Nutr.13, 4 (2018).

133.Turcot, V. et al. Protein-alteringvariants associated with body mass index implicate pathways that control energyintake and expenditure in obesity. Nat. Genet. 50, 26–41 (2018).

134.Celis-Morales, C. et al. Effect ofpersonalized nutrition on health-related behaviour change: evidence from theFood4Me European randomized controlled trial. Int. J. Epidemiol. 46, 578–588(2017).

135.San-Cristobal, R. et al. Mediterraneandiet adherence and genetic background roles within a web-based nutritionalintervention: the Food4Me study. Nutrients 9, 1107 (2017). After analysing theadherence to a Mediterranean diet in the Food4Me cohort and associating theresults to genetic risk score, a higher adherence to a Mediterranean dietinduces beneficial effects on metabolic outcomes, which can be affected by thegenetic background in some specific markers.

136.Fallaize, R. et al. Association betweendiet-quality scores, adiposity, total cholesterol and markers of nutritionalstatus in European adults: findings from the Food4Me study. Nutrients 10, 49(2018).

137.Ramos-Lopez, O. et al. DNA methylationpatterns at sweet taste transducing genes are associated with BMI andcarbohydrate intake in an adult population. Appetite 120, 230–239 (2018).

138.Milagro, F. I., Mansego, M. L., De Miguel,C. & Martinez, J. A. Dietary factors, epigenetic modifications and obesityoutcomes: progresses and perspectives. Mol. Asp. Med. 34, 782–812 (2013).

139.Aronica, L. et al. A systematic review ofstudies of DNA methylation in the context of a weight loss intervention.Epigenomics 9, 769–787 (2017).

140.Mohammadkhah, A. I., Simpson, E. B., Patterson,S. G. & Ferguson, J. F. Development of the gut microbiome in children, andlifetime implications for obesity and cardiometabolic disease. Children 5, 160(2018).

141.Rampelli, S. et al. Pre-obese children’sdysbiotic gut microbiome and unhealthy diets may predict the development ofobesity. Commun. Biol. 1, 222 (2018).

142.Moreno-Indias, I., Cardona, F., Tinahones,F. J. & Queipo-Ortuno, M. I. Impact of the gut microbiota on thedevelopment of obesity and type 2 diabetes mellitus. Front. Microbiol. 5, 190(2014).

143.Backhed, F. et al. The gut microbiota asan environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA101, 15718–15723 (2004).

144.Le Chatelier, E. et al. Richness of humangut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).Individuals in a Danish population with a low bacterial richness (23% of thepopulation) were characterized by more marked overall adiposity, insulinresistance and dyslipidaemia and a more pronounced inflammatory phenotype thanindividuals with high bacterial richness.

145.Ley, R. E., Turnbaugh, P. J., Klein, S.& Gordon, J. I. Microbial ecology: human gut microbes associated withobesity. Nature 444, 1022–1023 (2006).

146.Ley, R. E. et al. Obesity alters gutmicrobial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

147.Zhang, H. et al. Human gut microbiota inobesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370(2009).

148.Cani, P. D. et al. Endocannabinoids — atthe crossroads between the gut microbiota and host metabolism. Nat. Rev.Endocrinol. 12, 133–143 (2016). In this review, the authors show that theendocannabinoid system and related bioactive lipids strongly contribute toseveral specific physiological processes and are a characteristic of obesity,type 2 diabetes mellitus and inflammation.

149.Gao, X. et al. Body mass index differencesin the gut microbiota are gender specific. Front. Microbiol. 9, 1250 (2018).

150.Heianza, Y. et al. Gut-microbiome-relatedLCT genotype and 2-year changes in body composition and fat distribution: thePOUNDS Lost Trial. Int. J. Obes. 42, 1565–1573 (2018). The authors hypothesizethat the gut microbiome regulates host energy metabolism and adiposity by studying2-year changes in adiposity measures according to the LCT genotype and assignedweight-loss diets.

151.David, L. A. et al. Diet rapidly andreproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). Theauthors demonstrate that the gut microbiome can rapidly respond to altereddiet, potentially facilitating the diversity of human dietary lifestyles.

152.Arumugam, M. et al. Enterotypes of thehuman gut microbiome. Nature 473, 174–180 (2011).

153.Turnbaugh, P. J. et al. An obesity-associatedgut microbiome with increased capacity for energy harvest. Nature 444,1027–1031 (2006).

154.Chambers, E. S. et al. Acute oral sodiumpropionate supplementation raises resting energy expenditure and lipidoxidation in fasted humans. Diabetes Obes. Metab. 20, 1034–1039 (2018).

155.Canfora, E. E. et al. Colonic infusions ofshort-chain fatty acid mixtures promote energy metabolism in overweight/obesemen: a randomized crossover trial. Sci. Rep. 7, 2360 (2017).

156.Schwiertz, A. et al. Microbiota and SCFAin lean and overweight healthy subjects. Obesity 18, 190–195 (2010).

157.Rahat-Rozenbloom, S., Fernandes, J.,Gloor, G. B. & Wolever, T. M. Evidence for greater production of colonicshort-chain fatty acids in overweight than lean humans. Int. J. Obes. 38,1525–1531 (2014).

158.Canfora, E. E., Meex, R. C. R., Venema, K.& Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat.Rev. Endocrinol. 15, 261–273 (2019). This review outlines the role of productsderived from microbial carbohydrate and protein fermentation in relation toobesity and obesity-associated insulin resistance, type 2 diabetes mellitus andnonalcoholic fatty liver disease, and discusses the mechanisms involved.

159.Walker, A. W. et al. Dominant and diet-responsivegroups of bacteria within the human colonic microbiota. ISME J. 5, 220–230(2011).

160.Duncan, S. H. et al. Reduced dietaryintake of carbohydrates by obese subjects results in decreased concentrationsof butyrate and butyrate-producing bacteria in feces. Appl. Env. Microbiol. 73,1073–1078 (2007).

161.Wanders, A. J. et al. The effects ofbulking, viscous and gel-forming dietary fibres on satiation. Br. J. Nutr. 109,1330–1337 (2013).

162.Greenhill, C. Obesity: fermentablecarbohydrates increase satiety signals. Nat. Rev. Endocrinol. 13, 3 (2017).

163.Li, Z. et al. Butyrate reduces appetiteand activates brown adipose tissue via the gut-brain neural circuit. Gut 67,1269–1279 (2018).

164.Turnbaugh, P. J., Backhed, F., Fulton, L.& Gordon, J. I. Diet-induced obesity is linked to marked but reversiblealterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223(2008).

165.Ierardi, E. et al. Macronutrient intakesin obese subjects with or without small intestinal bacterial overgrowth: analimentary survey. Scand. J. Gastroenterol. 51, 277–280 (2016).

166.Koh, A., De Vadder, F.,Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to hostphysiology: short-chain fatty acids as key bacterial metabolites. Cell 165,1332–1345 (2016).

167.Neis, E. P., Dejong, C. H. & Rensen,S. S. The role of microbial amino acid metabolism in host metabolism. Nutrients7, 2930–2946 (2015).

168.Roager, H. M. et al. Colonic transit timeis related to bacterial metabolism and mucosal turnover in the gut. Nat.Microbiol. 1, 16093 (2016).

169.Russell, W. R. et al. High-protein,reduced-carbohydrate weight-loss diets promote metabolite profiles likely to bedetrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072 (2011).

170.Roager, H. M. & Licht, T. R. Microbialtryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

171.Candido, F. G. et al. Impact of dietaryfat on gut microbiota and low-grade systemic inflammation: mechanisms andclinical implications on obesity. Int. J. Food Sci. Nutr. 69, 125–143 (2018).

172.Wu, G. D. et al. Linking long-term dietarypatterns with gut microbial enterotypes. Science 334, 105–108 (2011).

173.Simoes, C. D. et al. Habitual dietaryintake is associated with stool microbiota composition in monozygotic twins. J.Nutr. 143, 417–423 (2013).

174.Osterberg, K. L. et al. Probioticsupplementation attenuates increases in body mass and fat mass during high-fatdiet in healthy young adults. Obesity 23, 2364–2370 (2015).

175.Hulston, C. J., Churnside, A. A. &Venables, M. C. Probiotic supplementation prevents high-fat,overfeeding-induced insulin resistance in human subjects. Br. J. Nutr. 113,596–602 (2015).

176.Lang, J. M. et al. Impact of individualtraits, saturated fat, and protein source on the gut microbiome. mBio 9,1604–1618 (2018).

177.Sen, T. et al. Diet-driven microbiotadysbiosis is associated with vagal remodeling and obesity. Physiol. Behav. 173,305–317 (2017).

178.Jin, Q. et al. Metabolomics andmicrobiomes as potential tools to evaluate the effects of the Mediterraneandiet. Nutrients 11, 207 (2019).

179.Kong, L. C. et al. Dietary patternsdifferently associate with inflammation and gut microbiota in overweight andobese subjects. PLoS One 9, e109434 (2014).

180.Etxeberria, U. et al. Shifts in microbiotaspecies and fermentation products in a dietary model enriched in fat andsucrose. Benef. Microbes 6, 97–111 (2015).

181.Zhang, L. S. & Davies, S. S. Microbialmetabolism of dietary components to bioactive metabolites: opportunities fornew therapeutic interventions. Genome Med. 8, 46 (2016).

182.Le Roy, C. I. et al. Heritable componentsof the human fecal microbiome are associated with visceral fat. Gut Microbes 9,61–67 (2018).

183.Chua, K. J., Kwok, W. C., Aggarwal, N.,Sun, T. & Chang, M. W. Designer probiotics for the prevention and treatmentof human diseases. Curr. Opin. Chem. Biol. 40, 8–16 (2017).

184.Salonen, A. et al. Impact of diet andindividual variation on intestinal microbiota composition and fermentationproducts in obese men. ISME J. 8, 2218–2230 (2014).

185.Jumpertz, R. et al. Energy-balance studiesreveal associations between gut microbes, caloric load, and nutrient absorptionin humans. Am. J. Clin. Nutr. 94, 58–65 (2011).

186.Dao, M. C. et al. Akkermansia muciniphilaand improved metabolic health during a dietary intervention in obesity:relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).

187.Menni, C. et al. Gut microbiome diversityand high-fibre intake are related to lower long-term weight gain. Int. J. Obes.41, 1099–1105 (2017).

188.Aguirre, M., Bussolo de Souza, C. &Venema, K. The gut microbiota from lean and obese subjects contributedifferently to the fermentation of arabinogalactan and inulin. PLoS One 11,e0159236 (2016).

189.Nicolucci, A. C. et al. Prebiotics reducebody fat and alter intestinal microbiota in children who are overweight or withobesity. Gastroenterology 153, 711–722 (2017).

190.Mayorga Reyes, L. et al. Correlationbetween diet and gut bacteria in a population of young adults. Int. J. FoodSci. Nutr. 67, 470–478 (2016).

191.Mazlan, N., Horgan, G., Whybrow, S. &Stubbs, J. Effects of increasing increments of fat- and sugar-rich snacks inthe diet on energy and macronutrient intake in lean and overweight men. Br. J.Nutr. 96, 596–606 (2006).

192.Rebello, C. J., Liu, A. G., Greenway, F.L. & Dhurandhar, N. V. Dietary strategies to increase satiety. Adv. FoodNutr. Res. 69, 105–182 (2013).

193.Torres-Fuentes, C., Schellekens, H.,Dinan, T. G. & Cryan, J. F. The microbiota-gut-brain axis in obesity.Lancet Gastroenterol. Hepatol. 2, 747–756 (2017).

194.Kristensen, M. & Jensen, M. G. Dietaryfibres in the regulation of appetite and food intake. Importance viscosity.Appetite 56, 65–70 (2011).

195.Han, P., Bagenna, B. & Fu, M. Thesweet taste signalling pathways in the oral cavity and the gastrointestinaltract affect human appetite and food intake: a review. Int. J. Food Sci. Nutr.70, 125–135 (2019).

196.Spector, A. C. & Schier, L. A.Behavioral evidence that select carbohydrate stimuli activate T1R-independentreceptor mechanisms. Appetite 122, 26–31 (2018).

197.Clark, M. J. & Slavin, J. L. Theeffect of fiber on satiety and food intake: a systematic review. J. Am. Coll.Nutr. 32, 200–211 (2013).

198.Bornet, F. R., Jardy-Gennetier, A. E.,Jacquet, N. & Stowell, J. Glycaemic response to foods: impact on satietyand long-term weight regulation. Appetite 49, 535–553 (2007).

199.Keogh, J., Atkinson, F., Eisenhauer, B.,Inamdar, A. & Brand-Miller, J. Food intake, postprandial glucose, insulinand subjective satiety responses to three different bread-based test meals.Appetite 57, 707–710 (2011).

200.Galarregui, C. et al. Interplay ofglycemic index, glycemic load, and dietary antioxidant capacity with insulinresistance in subjects with a cardiometabolic risk profile. Int. J. Mol. Sci.19, 3662 (2018).

201.Silva Figueiredo, P. et al. Fatty acidsconsumption: the role metabolic aspects involved in obesity and its associateddisorders. Nutrients 9, 1158 (2017).

202.Okla, M., Kim, J., Koehler, K. &Chung, S. Dietary factors promoting brown and beige fat development andthermogenesis. Adv. Nutr. 8, 473–483 (2017).

203.Maher, T. & Clegg, M. E. Dietarylipids with potential to affect satiety: mechanisms and evidence. Crit. Rev.Food Sci. Nutr. 59, 1619–1644 (2018).

204.Simopoulos, A. P. An increase in theomega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8,128 (2016).

205.Duca, F. A., Sakar, Y. & Covasa, M.The modulatory role of high fat feeding on gastrointestinal signals in obesity.J. Nutr. Biochem. 24, 1663–1677 (2013).

206.Trigueros, L. et al. Food ingredients asanti-obesity agents: a review. Crit. Rev. Food Sci. Nutr. 53, 929–942 (2013).

207.Darzi, J., Frost, G. S. & Robertson,M. D. Effects of a novel propionate-rich sourdough bread on appetite and foodintake. Eur. J. Clin. Nutr. 66, 789–794 (2012).

208.Ichimura, A., Hara, T. & Hirasawa, A.Regulation of energy homeostasis via GPR120. Front. Endocrinol. 5, 111 (2014).

209.Lorente-Cebrian, S. et al. Role of omega-3fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: areview of the evidence. J. Physiol. Biochem. 69, 633–651 (2013).

210.Hopkins, M. & Blundell, J. E. Energybalance, body composition, sedentariness and appetite regulation: pathways toobesity. Clin. Sci. 130, 1615–1628 (2016).

211.Leidy, H. J. et al. The role of protein inweight loss and maintenance. Am. J. Clin. Nutr. 101, 1320S–1329S (2015).

212.Gilbert, H. J. & Chandra, N. Editorialoverview: carbohydrate-protein interactions and glycosylation: integratingstructural biology, informatics and systems modelling to understand glycanstructure and glycan-protein interactions. Curr. Opin. Struct. Biol. 40, v–viii(2016).

213.Hochstenbach-Waelen, A.,Westerterp-Plantenga, M. S., Veldhorst, M. A. & Westerterp, K. R.Single-protein casein and gelatin diets affect energy expenditure similarly butsubstrate balance and appetite differently in adults. J. Nutr. 139, 2285–2292(2009).

214.Mars, M., Stafleu, A. & de Graaf, C.Use of satiety peptides in assessing the satiating capacity of foods. Physiol.Behav. 105, 483–488 (2012).

215.Martinez de Morentin, P. B., Urisarri, A.,Couce, M. L. & Lopez, M. Molecular mechanisms of appetite and obesity: arole for brain AMPK. Clin. Sci. 130, 1697–1709 (2016).

216.Ojha, U. Protein-induced satiation and thecalcium-sensing receptor. Diabetes Metab. Syndr. Obes. 11, 45–51 (2018).

217.Tsurugizawa, T., Uneyama, H. & Torii,K. Brain amino acid sensing. Diabetes Obes. Metab. 16, 41–48 (2014).

218.Fowler, S. P. G. Low-calorie sweetener useand energy balance: results from experimental studies in animals, andlarge-scale prospective studies in humans. Physiol. Behav. 164, 517–523 (2016).

原文链接:San-Cristobal R, Navas-Carretero S, Martínez-González M Á, et al. Contribution of macronutrients to obesity: implications for precision nutrition[J]. Nature Reviews Endocrinology, 2020: 1-16.

标签:

相关文章

详解FPGA范例结构图_逻辑_时钟

FPGA是由存放在片内RAM中的程序来设置其事情状态的,因此,事情时须要对片内的RAM进行编程。用户可以根据不同的配置模式,采取不...

互联网 2024-12-24 阅读0 评论0