首页 » 互联网 » 从小白到大年夜师这里有一份Pandas入门指南_数据_办法

从小白到大年夜师这里有一份Pandas入门指南_数据_办法

神尊大人 2024-12-18 12:23:42 0

扫一扫用手机浏览

文章目录 [+]

作者:Rudolf Höhn机器之心编译

参与:李诗萌、张倩

从小白到大年夜师这里有一份Pandas入门指南_数据_办法 互联网

在本文中,作者从 Pandas 的简介开始,一步一步讲解了 Pandas 的发展现状、内存优化等问题。
这是一篇最佳实践教程,既适宜用过 Pandas 的读者,也适宜没用过但想要上手的小白。

通过本文,你将有望创造一到多种用 pandas 编码的新方法。

本文包括以下内容:

Pandas 发展现状;内存优化;索引;方法链;随机提示。

在阅读本文时,我建议你阅读每个你不理解的函数的文档字符串(docstrings)。
大略的 Google 搜索和几秒钟 Pandas 文档的阅读,都会使你的阅读体验更加愉快。

Pandas 的定义和现状

什么是 Pandas?

Pandas 是一个「开源的、有 BSD 开源协议的库,它为 Python 编程措辞供应了高性能、易于利用的数据架构以及数据剖析工具」。
总之,它供应了被称为 DataFrame 和 Series(对那些利用 Panel 的人来说,它们已经被弃用了)的数据抽象,通过管理索引来快速访问数据、实行剖析和转换运算,乃至可以绘图(用 matplotlib 后端)。

Pandas 确当前最新版本是 v0.25.0 (https://github.com/pandas-dev/pandas/releases/tag/v0.25.0)

Pandas 正在逐步升级到 1.0 版,而为了达到这一目的,它改变了很多人们习以为常的细节。
Pandas 的核心开拓者之一 Marc Garcia 揭橥了一段非常有趣的演讲——「走向 Pandas 1.0」。

演讲链接:https://www.youtube.com/watch?v=hK6o_TDXXN8

用一句话来总结,Pandas v1.0 紧张改进了稳定性(如韶光序列)并删除了未利用的代码库(如 SparseDataFrame)。

数据

让我们开始吧!
选择「1985 到 2016 年间每个国家的自尽率」作为玩具数据集。
这个数据集足够大略,但也足以让你上手 Pandas。

数据集链接:https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016

在深入研究代码之前,如果你想重现结果,要先实行下面的代码准备数据,确保列名和类型是精确的。

import pandas as pdimport numpy as npimport os# to download https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016data_path = 'path/to/folder/'df = (pd.read_csv(filepath_or_buffer=os.path.join(data_path, 'master.csv')) .rename(columns={'suicides/100k pop' : 'suicides_per_100k', ' gdp_for_year ($) ' : 'gdp_year', 'gdp_per_capita ($)' : 'gdp_capita', 'country-year' : 'country_year'}) .assign(gdp_year=lambda _df: _df['gdp_year'].str.replace(',','').astype(np.int64)) )

提示:如果你读取了一个大文件,在 read_csv(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html)中参数设定为 chunksize=N,这会返回一个可以输出 DataFrame 工具的迭代器。

这里有一些关于这个数据集的描述:

>>> df.columnsIndex(['country', 'year', 'sex', 'age', 'suicides_no', 'population', 'suicides_per_100k', 'country_year', 'HDI for year', 'gdp_year', 'gdp_capita', 'generation'], dtype='object')

这里有 101 个国家、年份从 1985 到 2016、两种性别、六个年代以及六个年事组。
有一些得到这些信息的方法:

可以用 unique() 和 nunique() 获取列内唯一的值(或唯一值的数量);

>>> df['generation'].unique()array(['Generation X', 'Silent', 'G.I. Generation', 'Boomers', 'Millenials', 'Generation Z'], dtype=object)>>> df['country'].nunique()101

可以用 describe() 输出每一列不同的统计数据(例如最小值、最大值、均匀值、总数等),如果指定 include='all',会针对每一列目标输出唯一元素的数量和涌现最多元素的数量;

可以用 head() 和 tail() 来可视化数据框的一小部分。

通过这些方法,你可以迅速理解正在剖析的表格文件。

内存优化

在处理数据之前,理解数据并为数据框的每一列选择得当的类型是很主要的一步。

在内部,Pandas 将数据框存储为不同类型的 numpy 数组(比如一个 float64 矩阵,一个 int32 矩阵)。

有两种可以大幅降落内存花费的方法。

import pandas as pddef mem_usage(df: pd.DataFrame) -> str: \公众\"大众\"大众This method styles the memory usage of a DataFrame to be readable as MB. Parameters ---------- df: pd.DataFrame Data frame to measure. Returns ------- str Complete memory usage as a string formatted for MB. \"大众\"大众\公众 return f'{df.memory_usage(deep=True).sum() / 1024 2 : 3.2f} MB'def convert_df(df: pd.DataFrame, deep_copy: bool = True) -> pd.DataFrame: \"大众\"大众\公众Automatically converts columns that are worth stored as ``categorical`` dtype. Parameters ---------- df: pd.DataFrame Data frame to convert. deep_copy: bool Whether or not to perform a deep copy of the original data frame. Returns ------- pd.DataFrame Optimized copy of the input data frame. \"大众\"大众\"大众 return df.copy(deep=deep_copy).astype({ col: 'category' for col in df.columns if df[col].nunique() / df[col].shape[0] < 0.5})

Pandas 提出了一种叫做 memory_usage() 的方法,这种方法可以剖析数据框的内存花费。
在代码中,指定 deep=True 来确保考虑到了实际的系统利用情形。

memory_usage():https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.memory_usage.html

理解列的类型(https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes)很主要。
它可以通过两种大略的方法节省高达 90% 的内存利用:

理解数据框利用的类型;理解数据框可以利用哪种类型来减少内存的利用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,利用 float64 类型可能会产生不必要的内存开销)

除了降落数值类型的大小(用 int32 而不是 int64)外,Pandas 还提出了分类类型:https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html

如果你是用 R 措辞的开拓职员,你可能以为它和 factor 类型是一样的。

这种分类类型许可用索引更换重复值,还可以把实际值存在其他位置。
教科书中的例子是国家。
和多次存储相同的字符串「瑞士」或「波兰」比起来,为什么不大略地用 0 和 1 更换它们,并存储在字典中呢?

categorical_dict = {0: 'Switzerland', 1: 'Poland'}

Pandas 做了险些相同的事情,同时添加了所有的方法,可以实际利用这种类型,并且仍旧能够显示国家的名称。

回到 convert_df() 方法,如果这一列中的唯一值小于 50%,它会自动将列类型转换成 category。
这个数是任意的,但是由于数据框中类型的转换意味着在 numpy 数组间移动数据,因此我们得到的必须比失落去的多。

接下来看看数据中会发生什么。

>>> mem_usage(df)10.28 MB>>> mem_usage(df.set_index(['country', 'year', 'sex', 'age']))5.00 MB>>> mem_usage(convert_df(df))1.40 MB>>> mem_usage(convert_df(df.set_index(['country', 'year', 'sex', 'age'])))1.40 MB

通过利用「智能」转换器,数据框利用的内存险些减少了 10 倍(准确地说是 7.34 倍)。

索引

Pandas 是强大的,但也须要付出一些代价。
当你加载 DataFrame 时,它会创建索引并将数据存储在 numpy 数组中。
这是什么意思?一旦加载了数据框,只要精确管理索引,就可以快速地访问数据。

访问数据的方法紧张有两种,分别是通过索引和调查。
根据详细情形,你只能选择个中一种。
但在大多数情形中,索引(和多索引)都是最好的选择。
我们来看下面的例子:

>>> %%time>>> df.query('country == \公众Albania\"大众 and year == 1987 and sex == \"大众male\"大众 and age == \"大众25-34 years\"大众')CPU times: user 7.27 ms, sys: 751 µs, total: 8.02 ms# ==================>>> %%time>>> mi_df.loc['Albania', 1987, 'male', '25-34 years']CPU times: user 459 µs, sys: 1 µs, total: 460 µs

什么?加速 20 倍?

你要问自己了,创建这个多索引要多永劫光?

%%timemi_df = df.set_index(['country', 'year', 'sex', 'age'])CPU times: user 10.8 ms, sys: 2.2 ms, total: 13 ms

通过调查数据的韶光是 1.5 倍。
如果你只想检索一次数据(这种情形很少发生),查询是精确的方法。
否则,你一定要坚持用索引,CPU 会为此感激你的。

.set_index(drop=False) 许可不删除用作新索引的列。

.loc[]/.iloc[] 方法可以很好地读取数据框,但无法修正数据框。
如果须要手动构建(比如利用循环),那就要考虑其他的数据构造了(比如字典、列表等),在准备好所有数据后,创建 DataFrame。
否则,对付 DataFrame 中的每一个新行,Pandas 都会更新索引,这可不是大略的哈希映射。

>>> (pd.DataFrame({'a':range(2), 'b': range(2)}, index=['a', 'a']) .loc['a']) a ba 0 0a 1 1

因此,未排序的索引可以降落性能。
为了检讨索引是否已经排序并对它排序,紧张有两种方法:

%%time>>> mi_df.sort_index()CPU times: user 34.8 ms, sys: 1.63 ms, total: 36.5 ms>>> mi_df.index.is_monotonicTrue

更多详情请参阅:

Pandas 高等索引用户指南:https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html;Pandas 库中的索引代码:https://github.com/pandas-dev/pandas/blob/master/pandas/core/indexing.py。

方法链

利用 DataFrame 的方法链是链接多个返回 DataFrame 方法的行为,因此它们都是来自 DataFrame 类的方法。
在现在的 Pandas 版本中,利用方法链是为了不存储中间变量并避免涌现如下情形:

import numpy as npimport pandas as pddf = pd.DataFrame({'a_column': [1, -999, -999], 'powerless_column': [2, 3, 4], 'int_column': [1, 1, -1]}) df['a_column'] = df['a_column'].replace(-999, np.nan) df['power_column'] = df['powerless_column'] 2 df['real_column'] = df['int_column'].astype(np.float64) df = df.apply(lambda _df: _df.replace(4, np.nan)) df = df.dropna(how='all')

用下面的链更换:

df = (pd.DataFrame({'a_column': [1, -999, -999], 'powerless_column': [2, 3, 4], 'int_column': [1, 1, -1]}) .assign(a_column=lambda _df: _df['a_column'].replace(-999, np.nan)) .assign(power_column=lambda _df: _df['powerless_column'] 2) .assign(real_column=lambda _df: _df['int_column'].astype(np.float64)) .apply(lambda _df: _df.replace(4, np.nan)) .dropna(how='all') )

说实话,第二段代码更俊秀也更简洁。

方法链的工具箱是由不同的方法(比如 apply、assign、loc、query、pipe、groupby 以及 agg)组成的,这些方法的输出都是 DataFrame 工具或 Series 工具(或 DataFrameGroupBy)。

理解它们最好的方法便是实际利用。
举个大略的例子:

(df .groupby('age') .agg({'generation':'unique'}) .rename(columns={'generation':'unique_generation'})# Recommended from v0.25# .agg(unique_generation=('generation', 'unique')))

得到每个年事范围中所有唯一年代标签的大略链

在得到的数据框中,「年事」列是索引。

除了理解到「X 代」覆盖了三个年事组外,分解这条链。
第一步是对年事组分组。
这一方法返回了一个 DataFrameGroupBy 工具,在这个工具中,通过选择组的唯一年代标签聚合了每一组。

在这种情形下,聚合方法是「unique」方法,但它也可以接管任何(匿名)函数。

在 0.25 版本中,Pandas 引入了利用 agg 的新方法:https://dev.pandas.io/whatsnew/v0.25.0.html#groupby-aggregation-with-relabeling。

(df .groupby(['country', 'year']) .agg({'suicides_per_100k': 'sum'}) .rename(columns={'suicides_per_100k':'suicides_sum'})# Recommended from v0.25# .agg(suicides_sum=('suicides_per_100k', 'sum')) .sort_values('suicides_sum', ascending=False) .head(10))

用排序值(sort_values)和 head 得到自尽率排前十的国家和年份

(df .groupby(['country', 'year']) .agg({'suicides_per_100k': 'sum'}) .rename(columns={'suicides_per_100k':'suicides_sum'})# Recommended from v0.25# .agg(suicides_sum=('suicides_per_100k', 'sum')) .nlargest(10, columns='suicides_sum'))

用排序值 nlargest 得到自尽率排前十的国家和年份

在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum。

「国家」和「年份」列是索引。

nlargest(10) 比 sort_values(ascending=False).head(10) 更有效。

另一个有趣的方法是 unstack:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.unstack.html,这种方法许可迁徙改变索引水平。

(mi_df .loc[('Switzerland', 2000)] .unstack('sex') [['suicides_no', 'population']])

「age」是索引,列「suicides_no」和「population」都有第二个水平列「sex」。

下一个方法 pipe 是最通用的方法之一。
这种方法许可管道运算(就像在 shell 脚本中)实行比链更多的运算。

管道的一个大略但强大的用法是记录不同的信息。

def log_head(df, head_count=10): print(df.head(head_count)) return dfdef log_columns(df): print(df.columns) return dfdef log_shape(df): print(f'shape = {df.shape}') return df

和 pipe 一起利用的不同记录函数。

举个例子,我们想验证和 year 列比较,country_year 是否精确:

(df .assign(valid_cy=lambda _serie: _serie.apply( lambda _row: re.split(r'(?=\d{4})', _row['country_year'])[1] == str(_row['year']), axis=1)) .query('valid_cy == False') .pipe(log_shape))

用来验证「country_year」列中年份的管道。

管道的输出是 DataFrame,但它也可以在标准输出(console/REPL)中打印。

shape = (0, 13)

你也可以在一条链中用不同的 pipe。

(df .pipe(log_shape) .query('sex == \公众female\"大众') .groupby(['year', 'country']) .agg({'suicides_per_100k':'sum'}) .pipe(log_shape) .rename(columns={'suicides_per_100k':'sum_suicides_per_100k_female'})# Recommended from v0.25# .agg(sum_suicides_per_100k_female=('suicides_per_100k', 'sum')) .nlargest(n=10, columns=['sum_suicides_per_100k_female']))

女性自尽数量最高的国家和年份。

天生的 DataFrame 如下所示:

索引是「年份」和「国家」。

标准输出的打印如下所示:

shape = (27820, 12)shape = (2321, 1)

除了记录到掌握台外,pipe 还可以直接在数据框的列上运用函数。

from sklearn.preprocessing import MinMaxScalerdef norm_df(df, columns): return df.assign({col: MinMaxScaler().fit_transform(df[[col]].values.astype(float)) for col in columns}) for sex in ['male', 'female']: print(sex) print( df .query(f'sex == \公众{sex}\"大众') .groupby(['country']) .agg({'suicides_per_100k': 'sum', 'gdp_year': 'mean'}) .rename(columns={'suicides_per_100k':'suicides_per_100k_sum', 'gdp_year': 'gdp_year_mean'}) # Recommended in v0.25 # .agg(suicides_per_100k=('suicides_per_100k_sum', 'sum'), # gdp_year=('gdp_year_mean', 'mean')) .pipe(norm_df, columns=['suicides_per_100k_sum', 'gdp_year_mean']) .corr(method='spearman') ) print('\n')

自尽数量是否和 GDP 的低落干系?是否和性别干系?

上面的代码在掌握台中的打印如下所示:

male suicides_per_100k_sum gdp_year_meansuicides_per_100k_sum 1.000000 0.421218gdp_year_mean 0.421218 1.000000

female suicides_per_100k_sum gdp_year_meansuicides_per_100k_sum 1.000000 0.452343gdp_year_mean 0.452343 1.000000

深入研究代码。
norm_df() 将一个 DataFrame 和用 MinMaxScaling 扩展列的列表当做输入。
利用字典理解,创建一个字典 {column_name: method, …},然后将其解压为 assign() 函数的参数 (colunmn_name=method, …)。

在这种分外情形下,min-max 缩放不会改变对应的输出:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html,它仅用于参数。

在(迢遥的?)未来,缓式评估(lazy evaluation)可能涌如今方法链中,以是在链上做一些投资可能是一个好想法。

末了(随机)的技巧

下面的提示很有用,但不适用于前面的任何部分:

itertuples() 可以更高效地遍历数据框的行;

>>> %%time>>> for row in df.iterrows(): continueCPU times: user 1.97 s, sys: 17.3 ms, total: 1.99 s>>> for tup in df.itertuples(): continueCPU times: user 55.9 ms, sys: 2.85 ms, total: 58.8 ms

把稳:tup 是一个 namedtuple

join() 用了 merge();在 Jupyter 条记本中,在代码块的开头写上 %%time,可以有效地丈量韶光;UInt8 类:https://pandas.pydata.org/pandas-docs/stable/user_guide/gotchas.html#support-for-integer-na支持带有整数的 NaN 值;

记住,任何密集的 I/O(例如展开大型 CSV 存储)用低级方法都会实行得更好(尽可能多地用 Python 的核心函数)。

还有一些本文没有涉及到的有用的方法和数据构造,这些方法和数据构造都很值得花韶光去理解:

数据透视表:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot.html?source=post_page---------------------------

韶光序列/日期功能:https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html?source=post_page---------------------------;

绘图:https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html?source=post_page---------------------------。

总结

希望你可以由于这篇简短的文章,更好地理解 Pandas 背后的事情事理,以及 Pandas 库的发展现状。
本文还展示了不同的用于优化数据框内存以及快速剖析数据的工具。
希望对现在的你来说,索引和查找的观点能更加清晰。
末了,你还可以试着用方法链写更长的链。

这里还有一些条记:https://github.com/unit8co/medium-pandas-wan?source=post_page---------------------------

除了文中的所有代码外,还包括大略数据索引数据框(df)和多索引数据框(mi_df)性能的定时指标。

熟能生巧,以是连续修炼技能,并帮助我们建立一个更好的天下吧。

PS:有时候纯用 Numpy 会更快。

原文链接:https://medium.com/unit8-machine-learning-publication/from-pandas-wan-to-pandas-master-4860cf0ce442

标签:

相关文章

属性页DLL,技术革新背后的秘密武器

随着科技的飞速发展,计算机软件在人们的生活中扮演着越来越重要的角色。在众多技术中,属性页DLL(Dynamic Link Libr...

互联网 2024-12-29 阅读0 评论0