(1)异构硬件平台:CPU 打算单元、AI 单元(GPU、ASIC、FPGA)、MCU 掌握单元、存储、ISP 等其他硬件组成的自动驾驶域掌握器;
(2)系统软件:硬件抽象层(Hypervisor、BSP)、操作系统内核(QNX/Linux/ Andriod/Vxworks)、中间件组件等;
(3)功能软件:自动驾驶通用框架(感知、决策、实行)、功能软件通用框架 (数据抽象/数据流框架/根本做事);

(4)其他:工具链(开拓、仿真、调试、测试等)、以及安全体系(功能安全、 信息安全等)。
EEA 架构逐渐走向域集中,DCU 应运而生
单车 ECU 数量激增,无法知足汽车智能化的需求。1980 年代开始,以机器为 主宰的汽车行业内掀起一场电子电气化革命,电子掌握单元(Electronic Control Unit,ECU)盘踞了全体汽车,此时的汽车电子电气架构都是分布式的,各个 ECU 都通过 CAN(Controller Area Network,掌握器域网络)或 LIN(LocalInterconnect Network,局部互联网络)总线连接在一起,通过工程师预设好的 通信协议交流信息。在传统的 EEA 架构下,ECU 是系统的核心,智能功能的 升级依赖于 ECU 数量的累加。
原有智能化升级办法面临研发和生产本钱剧增、安全性降落、算力不敷等问题, 传统分布式架构亟需升级,传统 EEA 架构紧张面临以下问题:(1)掌握器数 量过多:各级别汽车 ECU 数量都在逐年递增,每台汽车搭载的 ECU 均匀 25 个,一些高端车型常日会超过 100 个;(2)线束支配过于繁芜:ECU 数量越 多,总线数量必将更长,2000 年奔驰 S 级轿车的电子系统已经拥有 80 个 ECU, 1,900 条总长达 4km 的通信总线。2007 年奥迪 Q7 和保时捷卡宴的总线长度突 破 6km,重量超过 70kg,基本成为位列发动机之后的全车第二重部件;(3) “跨域”旗子暗记传输需求增加:智能驾驶须要大量的“跨域”旗子暗记传输,环境传 感器(雷达,视频和激光雷达)产生了大量数据传输的需求,这也对传统分散 式 ECU 根本架构提出了寻衅。
为适应智能化需求,催生出以 DCU 为主的域集中架构。为了掌握总线长度、 降落 ECU 数量,从而降落电子部件重量、降落整车制造本钱,将分散的掌握器 按照功能域划分、集成为运算能力更强的域掌握器(Domain Control Unit,DCU) 的想法应运而生。博世用三类 EEA 架构共六个阶段来展示架构演进方向:分布 式(模块化、集成化)、域集中式(集中化、域领悟)、集中式(车载电脑、 车-云打算)。
功能域与空间域是当前域掌握器发展的两条路径。域掌握器根据划分办法,主 要可以分为以五大功能域划分和以车辆特定物理区域划分两种,相较于纯粹以 功能为导向的域掌握器,空间域划分的集中化程度更高,对 OEM 厂商自身开 发能力哀求也会更高:
(1)基于功能划分的域掌握器:范例代表博世、大陆等传统 Tier 1
博世、大陆等传统 Tier 1 将汽车 EEA 架构按功能划分为动力域(安全)、底盘 域(车辆运动)、信息娱乐域(座舱域)、自动驾驶域(赞助驾驶)和车身域 (车身电子)五大区域。每个区域对应推出相应的域掌握器,末了再通过 CAN/LIN 等通讯办法连接至主干线乃至托管至云端,从而实现整车信息数据的 交互。
(2)基于空间划分的域掌握器:范例代表特斯拉
基于空间划分的域掌握器因此车辆特定物理区域为边界来进行功能划分,相较 于纯粹以功能为导向的域掌握器,其集中化程度更高。特斯拉则是个中的范例 代表,2012 年 Model S 还是以范例的功能域划分为主,2017 年推出 Model 3 则直接进入准中心架构阶段,特斯拉的 EE 架构只有三大部分,包括 CCM(中 央打算模块)、BCM LH(左车身掌握模块)、BCM RH(右车身掌握模块)。 中心打算模块直接整合了驾驶赞助系统(ADAS)和信息娱乐系统(IVI)两大 域,以及外部连接和车内通信系统域功能;左车身掌握模块和右车身掌握模块 分别卖力剩下的车身与便利系统、底盘与安全系统和部分动力系统的功能。特 斯拉的准中心 E/E 架构已带来了线束革命,Model S/Model X 整车线束的长度 是 3 公里,Model 3 整车线束的长度缩短到了 1.5 公里,Model Y 进一步缩短到 1 公里旁边,特斯拉终极的操持是将线束长度缩短至 100 米。
以功能域划分的域集中式会是大部分主机厂当下的紧张选择。采取功能域还是 空间域,核心还是取决于 OEM 自身的实力和与供应商体系的博弈,OEM 未来 会加大垂直整合程度,将核心软硬件尽可能节制在自己手中,形成技能壁垒。 但是目前来看,以大部分主机厂和 Tier 1 自身的计策布局,估量大部分主机厂 仍会利用稠浊域的 EEA 架构,即部分功能域集中化,形成“分布式 ECU+域控 制器”的过渡方案,末了形成“Super controller(中心超级打算机)+ Zonal control unit(区掌握器)”的架构,这一演进过程可能长达 5-10 年。
单车智能化逐步提升,对打算平台的需求持续增加
当前自动驾驶正处在 L2 向 L3 级别跨加倍展的关键阶段。个中,L2 级的 ADAS 是实现高档级自动驾驶的根本,从环球各车企自动驾驶量产韶光表来看,L3 级 别自动驾驶即将迎来大规模地商业化落地。
随着自动驾驶级别的提升,单车传感器的数量呈倍级增加。估量自动驾驶 Level 1-2 级须要 10-20 个传感器,Level 3 级须要 20-30 个传感器,Level 4-5 级须要 40-50 个传感器。
Level 1-2 级别:常日具有 1 个前置远程雷达和 1 个摄像头,用于自适应巡航 掌握,紧急制动赞助和车道偏离警告/赞助。2 个向后的中程雷达可实现盲点 检测,外加 4 个摄像头和 12 个超声波雷达则可实现 360 度视角的停车赞助功 能。估量 Level 1-2 的总传感器数量约为 10-20 个旁边。
Level 3 级别:在 Level 1-2 配置的根本上,外加 1 个远程激光雷达,由于主 动间隔丈量,激光雷达还具有高分辨率,广角和高精度的特点,这对付检测 和分类工具或跟踪地标以进行定位将是必需的。对付高速公路领航系统 (Highway pilot)运用,常日会额外增加 1 颗后向的远程激光雷达。估量会 利用 6-8 个摄像头,8-12 个超声波雷达和 4-8 个毫米波雷达,以及 1 个激光 雷达,因此,估量 Level 3 的传感器总数量会在 20-30 个旁边。
Level 4-5 级别:常日须要多种传感器进行 360°视角的交叉验证,以肃清每 种传感器的弱点。估量会利用 8-15 个摄像头,8-12 个超声波雷达和 6-12 个 毫米波雷达,以及 1-3 个激光雷达,因此,估量用于 Level 4 至 5 的传感器总 数量会在 30-40 个旁边。
随着自动驾驶等级的提高,所需的算力高速提升。汽车自动驾驶的智能化水平取决于算法是否强大,从 L1 到 L5,自动驾驶每提升一个等级,算力哀求也同 样提升一个等级:L3 之前,自动驾驶所需算力较低;L3 须要的 AI 算力达到 20TOPS;L3 之后,算力哀求数十倍增长,L4 靠近 400TOPS,L5 算力哀求更 为严苛,达到 4000+TOPS。每增加一级自动驾驶等级,算力需求则相应增长 一个数量级。根据英特尔推算,在全自动驾驶时期,每辆汽车每天产生的数据 量将高达 4000GB。
2 硬件平台之一:芯片打算芯片是算力时期下智能网联汽车的核心
打算芯片可分为 MCU 芯片与 SoC 芯片。随着汽车 EE 架构的不断改造,汽车 半导体高速发展,按功能不同,汽车半导体可分为汽车芯片和功率半导体,而 在汽车芯片中,最主要的是打算芯片,按集成规模不同,可分为 MCU 芯片与 SoC 芯片。 MCU(Micro Control Unit)微掌握器,是将打算机的 CPU、RAM、ROM、定 时计数器和多种 I/O 接口集成在一片芯片上,形成芯片级的芯片;而 SoC (System on Chip)指的是片上系统,与 MCU 不同的是,SoC 是系统级的芯 片,它既像 MCU 那样有内置 RAM、ROM,同时又可以运行操作系统。
智能化趋势驱动汽车芯片从 MCU 向 SoC 过渡。自动驾驶对汽车底层硬件提出 了更高的哀求,实现单一功能的单一芯片只能供应大略的逻辑打算,无法供应 强大的算力支持,新的 EE 架构推动汽车芯片从单一芯片级芯片 MCU 向系统级 芯片 SoC 过渡。
SoC 市场高速发展,估量 2026 年市场规模达到 120 亿美元。汽车智能化落地 加速了车规级 SoC 的需求,也带动了其发展,相较于车载 MCU 的平稳增长, SoC 市场呈现高速增长的趋势,根据 Global Market Insights 的数据,估量环球 车规级 SoC 市场将从 2019 年的 10 亿美元达到 2026 年的 160 亿美元,CAGR 达到 35%,远超同期汽车半导体整体增速。
传统 MCU:MCU 需求稳步增长,外洋寡头长期垄断
MCU 是 ECU 的运算大脑。ECU(Electronic Control Unit,电子掌握单元)是 汽车 EE架构的基本单位,每个 ECU 卖力不同的功能。MCU 芯片嵌入在 ECU 中 作为运算大脑。当传感器输入旗子暗记,输入处理器对旗子暗记进行模数转换、放大等 处理后,通报给 MCU 进走运算处理,然后输出处理器对旗子暗记进行功率放大、 数模转换等,使其驱动如电池阀、电动机、开关等被控元件事情。
MCU 根据不同场景需求,有 8 位、16 位和 32 位。8 位 MCU 紧张运用于车体 各子系统中较低真个掌握功能,包括车窗、座椅、空调、风扇、雨刷和车门控 制等。16 位 MCU 紧张运用为动力传动系统,如引擎掌握、齿轮与离合器掌握 和电子式涡轮系统等,也适宜用于底盘机构上,如悬吊系统、电子动力方向盘、 电子刹车等。32 位 MCU 紧张运用包括仪表板掌握、车身掌握以及部分新兴的 智能性和实时性的安全功能。在目前市场的主流 MCU 当中,8 位和 32 位是最 大的两个阵营。
汽车智能化不断渗透,单车 MCU 需求增加。随着汽车 EE 架构的演化,单车 MCU 需求量不断增加。自动驾驶浪潮带动 MCU 需求,根据 IHS 统计,与传统 燃油车单车比较,智能驾驶汽车所需 MCU 数量是其 4 倍以上,且高位数 MCU 由于其高算力将扮演主要角色。
MCU 市场稳步发展,估量 2026 年环球规模达 88 亿美元。在市场规模上,全 球 MCU 市场呈现稳步发展的趋势,根据 IC Insights 估计,估量环球 MCU 市 场规模从 2020 年的 65 亿美元达到 2026 年的 88 亿美元,CAGR 达到 5.17%, 略低于同期汽车半导体增速。同时我国 MCU 发展与天下齐头并进,估量 2026 年市场规模达到 56 亿元,CAGR 达到 5.33%,与天下同期基本持平。
瑞萨、恩智浦、英飞凌等外洋厂商霸占紧张市场份额,国产厂商渗透率较低。 目前环球 MCU 市场呈现寡头竞争局势,市占率靠前的瑞萨、恩智浦、英飞凌 等厂商均是国际厂商,CR7 占比达到 98%,由于车规级 MCU 研发周期较长, 认证哀求较高,目前海内厂商渗透率较低,仅有几家企业能够实现中低端产品 的量产。
智能座舱 SoC:高通在中高端数字座舱呈现垄断局势
一芯多屏不断遍及,高通在中高端数字座舱呈现垄断地位。伴随着数字座舱渗 透率不断提升,车内数量不断增加,屏幕尺寸不断增大,智能座舱快速遍及, 一芯多屏逐渐成为主流,也带动智能座舱 SoC 芯片的快速放量。SoC 运用在智 能汽车上紧张有智能座舱以及自动驾驶两方面,比较于自动驾驶 SoC,座舱域 SoC 由于哀求相对较低,成为 SoC 落地智能汽车的先行者。高通、恩智浦、德 州仪器、英特尔、联发科等各家不断更新其座舱 SoC 产品,在中高端数字座舱 域,目前高通呈现垄断地位。目前,高通已经赢得环球领先的 20+家汽车制造商的信息影音和数字座舱项目,高通骁龙 820A 和 8155 两代平台成为浩瀚车型 数字座舱平台的主流选择,高通也将推出的第四代座舱 SoC SA8295,在算力、 I/O 能力等方面表现出色,不断稳固其在中高端数字座舱的稳固地位。(报告来源:未来智库)
自动驾驶 SoC:CPU+XPU 是当前主流,英伟达当前领先
自动驾驶芯片是指可实现高等别自动驾驶的 SoC 芯片。随着自动驾驶汽车智能 化水平越来越高,须要处理的数据体量越来越大,高精舆图、传感器、激光雷 达等软硬件设备对打算提出更高哀求,因此在 CPU 作为通用途理器之外,增加 具备 AI 能力的加速芯片成为主流,常见的 AI 加速芯片包括 GPU、ASIC、FPGA 三类。
CPU 作为通用途理器,适用于处理数量适中的繁芜运算。CPU 作为通用途理 器,除了知足打算哀求,还能处理繁芜的条件和分支以及任务之间的同步骤和。 CPU 芯片上须要很多空间来进行分支预测与优化,保存各种状态以降落任务切 换时的延时。这也使得它更适宜逻辑掌握、串走运算与通用类型数据运算。以 GPU 与 CPU 进行比较为例,与 CPU 比较,GPU 采取了数量浩瀚的打算单元 和超长的流水线,但只有非常大略的掌握逻辑并省去了 Cache。而 CPU 不仅 被 Cache 霸占了大量空间,而且还有有繁芜的掌握逻辑和诸多优化电路,比较 之下打算能力只是很小的一部分。
常见的 AI 加速芯片包括 GPU、ASIC、FPGA 三类:
GPU:适用于处理数量弘大的相对大略的运算。GPU 拥有一个由数以 千计的更小、更高效的 ALU 核心组成的大规模并行打算架构,大部分 晶体管紧张用于构建掌握电路和 Cache,而掌握电路也相对大略,GPU 的打算速率有拥有更强大的处理浮点运算的能力,更善于处理多重任 务,比如图形打算。
FPGA:现场可编程门阵列,它是在 PAL、GAL、CPLD 等可编程器件 的根本上进一步发展的产物。它是作为专用集成电路领域中的一种半定 制电路而涌现的,既办理了定制电路的不敷,又战胜了原有可编程器件 门电路数有限的缺陷。
ASIC:一种为专门目的而设计的集成电路。是指应特定用户哀求和特 定电子系统的须要而设计、制造的集成电路。ASIC 的特点是面向特定 用户的需求,在批量生产时与通用集成电路比较具有体积更小、功耗更 低、可靠性提高、性能提高、保密性增强、本钱降落等优点。
“CPU+XPU”是当前自动驾驶 SoC 芯片设计的主流趋势。根据 XPU 选择不 同,又可以分为三种技能路线:CPU+GPU+ASIC、CPU+ASIC 以及 CPU+FPGA 三类。
(1)“CPU+GPU+ASIC”,紧张代表英伟达、特斯拉 FSD 以及高通 Ride。 英伟达 Xavier 和特斯拉 FSD 采取“CPU+GPU+ASIC”的设计路线,英伟达 Xavier 以 GPU 为打算核心,紧张有 4 个模块:CPU、GPU、以及两个 ASIC 芯片 Deep Learning Accelerator(DLA)和 Programmable Vision Accelerator (PVA);特斯拉 FSD 芯片以 NPU(ASIC)为打算核心,有三个紧张模块:CPU、GPU 和 Neural Processing Unit(NPU)。
(2)“CPU+ASIC”,紧张代表 Mobileye EyeQ5 系列和地平线征程系列。 Mobieye EyeQ5 和地平线征程系列采取“CPU+ASIC”架构,EyeQ5 紧张有 4 个模块:CPU、Computer Vision Processors(CVP)、Deep Learning Accelerator (DLA)和 Multithreaded Accelerator(MA),个中 CVP 是针对传统打算机视 觉算法设计的 ASIC;地平线自主设计研发了 Al 专用的 ASIC 芯片 Brain Processing Unit(BPU)。
(3)CPU+FPGA,紧张代表 Waymo。与别的厂商不同,Waymo 采取 “CPU+FPGA”的架构,其打算平台采取英特尔 Xeon12 核以上 CPU,搭配 Altera 的 Arria 系列 FPGA。
目前各家发布的最新芯片平台均可以支持 L3 或 L4 级的算力需求,英伟达当前 处于领先位置。英伟达单颗 Orin 的算力可以达到 254TOPS,而 2022 年落地 的车型中搭载 4 颗 Orin 的蔚来 ET7 和威马 M7 其顶峰算力将超过 1000TOPS, 高通骁龙 Ride 平台的顶峰算力估量在 700-760TOPS,Mobileye 也推出了面向 高阶自动驾驶的 EyeQ6 Ultra,算力达到 176 TOPS,当前各家最前辈的算力平 台均可以支持 L3 或 L4 级的算力需求。从干系量产车型来看,英伟达 Orin 成为 当下的主流选择,Mobileye 正在逐渐掉队。
评估芯片性能,算力、能耗、效率缺一不可
评估芯片的性能,一样平常采取 PPA 即 Power(功耗),Performance(性能), Aera(面积)三大指标来衡量性能。而智能驾驶领域,峰值算力成为衡量自动 驾驶芯片的最紧张指标,常见的指标有 TOPS、FLOPS、DMIPS 三种:
TOPS(Tera Operation Per Second):每秒完成操作的数量,乘操作算 一个 OP,加操作算一个 OP。TOPS 的物理打算单位是积累加运算(Multiply Accumulate, MAC),1 个 MAC 即是 2 个 OP。TOPS 表示每秒进行 1 万 亿次操作。
FLOPS(Floating-Point Operations Per Second):每秒可实行的浮点 运算次数的字母缩写,它用于衡量打算机浮点运算处理能力。浮点运算, 包括了所有涉及小数的运算。MFLOPS(MegaFLOPS)即是每秒 1 百万 次的浮点运算;GFLOPS(GigaFLOPS)即是每秒 10 亿(=10^9)次的 浮点运算;TFLOPS(teraFLOPS)即是每秒 1 万亿次的浮点运算。
DMIPS(Dhrystone Million Instructions Per Second):是丈量处理器 运算能力的最常见基准程序之一,常用于处理器的整型运算性能的丈量。 MIPS:每秒实行百万条指令,用来打算同一秒内系统的处理能力,即每秒 实行了多少百万条指令。不同的 CPU 指令集不同、硬件加速器不同、CPU 架构不同, 导致不能大略的用核心数和 CPU 主频来评估性能,Dhrystone 作为统一的跑分算法,DMIPS 比 MIPS 的数值更具故意义。
(1)智能座舱 SoC: DMIPS 衡量 CPU 算力的紧张单位是 DMIPS,基本上 SoC 高于 20,000 DMIPS 才能流畅地运行智能座舱的紧张功能,如 AR 导航或云导航、360 全景、播放 流媒体、AR- HUD、多操作系统虚拟机等。GPU 方面,100 GFLOPS 的算力 就可以支持 3 个 720P 的屏幕。一样平常来说,CPU 高于 20,000 DMIPS,GPU 高 于 100 GFLOPS 的 SoC 便是智能座舱 SoC 芯片。
(2)自动驾驶 SoC: TOPS 峰值算力表示的只是芯片的理论上限,不能代表其全部性能。自动驾驶 须要的打算机视觉算法是基于卷积神经网络实现的,而卷积神经网络的实质是 累积累加算法(Multiply Accumulate,MAC),实现此运算操作的硬件电路单 元,被称为“乘数累加器”。这种运算的操作,是将乘法的乘积结果 bc 和累 加器 a 的值相加,再存入累加器 a 的操作。TOPS = MAC 矩阵行 MAC 矩阵列 2 主频,TOPS 峰值算力反响的都是 GPU 理论上的乘积累加矩阵运算算力, 而非在实际 AI 运用处景中的处理能力,具有很大的局限性。以英伟达的芯片为 例,Orin、Xavier 的利用率基本上是 30%旁边,而采取 ASIC 路线,ASIC 芯片 针对不同的神经网络模型去优化,基本上可以做到 60%~80%之间。
地平线提出最真实的 AI 效能由理论峰值打算效能、有效利用率、AI 算法效率 组成。地平线在 2020 环球人工智能和机器人峰会提出了芯片 AI 性能评估办法 MAPS(Mean Accuracy-guaranteed Precessing Speed),地平线认为最真实 的 AI 效能实际上由三要素组成,分别为理论峰值打算效能、有效利用率、AI 算法效率。(1)理论峰值打算效能,TOPS/W、TOPS/$,即传统理论峰值衡 量的方法;(2)芯片有效利用率,把算法支配在芯片上,根据架构特点,动用 编译器等系统化办理一个极其繁芜的带约束的离散优化问题,而得到一个算法 在芯片上运行的实际利用率,这是软硬件打算架构的优化目标;(3)AI 算法 效率,每花费一个 TOPS 算力,能带来多少实际的 AI 算法的性能,它表示的是 AI 算法效率的持续提升。
3 硬件平台之二:域掌握器面向高阶自动驾驶,异构多核硬件架构成为趋势
车载打算平台需采取异构多核芯片硬件架构。自动驾驶的域掌握器,要具备多 传感器领悟、定位、路径方案、决策掌握、无线通讯、高速通讯的能力。常日 须要外接多个摄像头、毫米波雷达、激光雷达,以及 IMU 等设备,完成的功能 包含图像识别、数据处理等。面向 L3 及以上高阶自动驾驶,单一芯片无法知足 诸多接口和算力需求,打算根本平台需采取异构芯片的硬件方案,具有芯片选 型灵巧、可配置拓展、算力可堆砌等优点。打算平台的异构分布硬件架构紧张 包括 CPU 打算单元、AI 单元和掌握单元。
(1)CPU 打算单元: 由车规级多个多核 CPU 组成,大多为 ARM 架构,单核主频高,打算能力强, 善于处理高精度浮点数串行打算,通过内核系统管理软硬件资源、完成任务调 度,用于实行自动驾驶干系大部分核心算法,同时整合多源数据完成路径方案、 决策掌握等功能。
(2)AI 单元: AI 单元是全体异构硬件平台中算力的最紧张来源,承担大规模浮点数并行打算 需求,主流的 AI 芯片可选用 GPU、FPGA、ASIC 三种等。常日内核系统进行 加速引擎及其他芯片资源的分配、调度。AI 单元实现对多传感器的数据高效处 理与领悟,获取用于方案及决策的关键信息。
(3)掌握单元: 卖力可靠性和车辆掌握,功能安全和冗余监控浸染,不哀求很高的算力,但是 可靠性必须要有保障。基于传统车辆掌握器 MCU,实现车辆动力学横纵向掌握 并知足功能安全 ASIL-D 等级哀求。
高性能的车载打算平台是高阶自动驾驶的必备,除了异构多核的硬件架构外, 分布弹性可扩展、丰富的 I/O 接口资源、高内存带宽、车规与功能安全等也都 是高阶自动驾驶域掌握器的必备特点:
(1)硬件异构: 面向高阶自动驾驶的打算平台需兼容多类型多数量传感器,单一芯片无法知足 诸多接口和算力哀求,需采取“CPU+XPU”的异构硬件方案,前文已做详细 先容;
(2)分布弹性可扩展: 车载打算平台需具有弹性扩展特性以知足不同等级自动驾驶需求。针对 L3 及以 上高阶自动驾驶,随着自动驾驶等级提升,车载智能打算根本平台算力、接口 等需求都会增加。除提高单芯片算力外,硬件单元也可复制堆叠,自动驾驶操 作系统弹性适配硬件单元并可进行平滑拓展,达到整体系统提升算力、增加接 口、完善功能的目的;
(3)丰富的 I/O 接口资源: 高阶自动驾驶的感知系统传感器种类与数量浩瀚,车载摄像头、激光雷达、毫 米波雷达、超声波雷达、组合导航、IMU、V2X 模块等,因此丰富的接口资源 也是很自动驾驶域掌握器的关键特点。车载摄像头的数据接口一样平常采取 GMSL 或 FPDLink,激光雷达都是采取 Ethernet 接口,目前大多是普通 Ethernet;毫 米波雷达都是 CANFD 传输,超声波雷达采取 LIN 总线,组合导航和惯导常见 接口为 RS232 串口,V2X 模块采取 Ethernet 接口传输。除了上述传感器所需 IO 接口外,常见的其它高速接口与低速接口比如 PCIe、USB、I2C、SPI 等;
(4)高内存带宽: 自动驾驶芯片平台由于要接入大量的传感器数据,因此内存的压力非常大。整 个别系每每呈现出 Memory-Bound 系统的特点,因此内存带宽常日决定了系统 性能的理论上限;
(5)车规与功能安全: 与消费级不同,车规级产品在安全性和可靠性上有更高哀求。如 AEC-Q100、 ISO 26262 等,ISO 26262 对安全等级做了划分,常见的是 ASIL-B 和 ASIL-D 级别。
高性能 SoC 主芯片占整体域掌握器的紧张本钱
当前市情上最为成熟的域掌握器为特斯拉 19 年推出的 HW 3.0,特斯拉首次推 出其自研的 FSD 芯片,通过以太网总线的办法承载数据输入与以太网交流的功 能,其本钱整体较为透明,通过拆解其 BOM 本钱,梳理高阶自动驾驶域掌握 器的整天职布。
估量 HW 3.0 板上全部芯片的本钱约在 5000 元旁边,外加车规级接插件、以太 网连接器以及 PCB 等外围硬件,整块板子的硬件本钱大约在 7500-8500 公民 币之间。个中,主控 SoC 芯片约占总芯片本钱的 61%旁边,占整体硬件本钱 的 20%旁边。特斯拉 HW 3.0 的主板上共搭载了两块的自研芯片,双芯片的目 的是作为安全冗余,相互对照,每块芯片可以独立运算。每块芯片周围有四块 镁光 DRAM 内存,每块芯片分别配有一块东芝闪存芯片,用于承载操作系统和 深度学习模型。
主板的右侧是视频输出接口,从上到下依次是 FOV 摄像头、环视摄像头、A 柱 旁边摄像头、B 柱旁边摄像头、前视主摄像头、车内 DMS 摄像头、后摄像头、 GPS 同轴天线;左侧是电源接口和其他其余的输入/输出接口,从上到下依次是 第二供电和 I/O 接口(车身 LIN 网络等),以太网诊断进/出、调试 USB、烧录、 主供电和 I/O(底盘 CAN 网络等)。
OEM 自研、系统集成商、软件平台商三方势力各显技艺
自动驾驶域掌握器玩家紧张分为系统集成商、软件平台厂商以及 OEM 厂商三 大类。(1)OEM 厂商:特斯拉以及海内的造车新势力如蔚来、小鹏、威马、空想、上汽智己等都已实现或宣告将自研自动驾驶域掌握器,以节制未来软件 定义汽车下底层的硬件自主权;(2)系统集成商和 Tier 1:如博世、大陆、采 埃孚等国际 Tier1 和系统集成商,德赛西威、经纬恒润、华为等一批本土 Tier1 和系统集成商;(3)软件平台厂商:如映驰科技、东软睿驰、TTech、中科创 达等公司。
(1)智能座舱域掌握器:环球范围内,伟世通、大陆、博世、安波福在座舱域 掌握器市场霸占主导地位,海内企业华为、德赛西威、航盛电子、东软等也纷 纷推出了座舱域掌握器办理方案。在座舱 SoC 芯片方面,紧张包括高通 820A 与 8155P、英特尔 Atom、恩智浦 i.MX8、瑞萨 R-CAR H3、德州仪器 Jacinto 系列等。
(2)自动驾驶域掌握器:环球范围内,环球 Tier1 基本都已布局自动驾驶域控 制器产品,范例产品如伟世通 DriveCore、博世 DASy、大陆集团 ADCU、采埃 孚 ProAI、Veoneer Zeus、麦格纳 MAX4 等,海内方面,如德赛西威 IPU 系列、 经纬恒润 ADC、东软睿驰 CPDC、华为 MDC 等。
除了 OEM 厂商自研之外,OEM 厂还孵化成立独立第三方智能驾驶软件平台型 公司参与域掌握器市场。此外,在域掌握器市场还有一类主要的玩家,便是从 主机厂孵化成立的智能驾驶软件平台型公司,如长城汽车的毫末知行,吉利汽 车的亿咖通等。长城汽车即将在2022年发布的新摩卡车型将搭载高通骁龙Ride 平台,干系域掌握器设计与生产则是由毫末知行来实现的。亿咖通在 2021 年 与伟世通和高通达成计策互助,为环球市场供应领先的智能座舱办理方案,此 外亿咖通在 2020 年与安谋中国互助成立芯擎科技,2021 年 10 月海内首颗 7nm 车规级座舱芯片“龍鹰一号”流片成功,操持在 2022 年三季度实现量产,2022 年底实现前装上车。
4 系统软件之一:操作系统操作系统标准与分类:车控 OS 与座舱 OS
在智能网联时期,车机操作系统 OS(operating system)按下贱运用划分, 可以分为车控 OS 和座舱 OS 两大类:(1)车控 OS:紧张卖力实现车辆底盘 掌握、动力系统和自动驾驶,与汽车的行驶决策直接干系;(2)座舱 OS:主 要为车载信息娱乐做事以及车内人机交互供应掌握平台,是汽车实现座舱智能 化与多源信息领悟的运行环境,不直接参与汽车的行驶决策。
对付车控 OS 而言,可分为嵌入式实时操作系统 RTOS 和基于 POSIX 标准的 操作系统。(1)嵌入式实时操作系统 RTOS:传统车控 ECU 中主控芯片 MCU 装载运行的嵌入式 OS,面向经典车辆掌握领域,如动力系统、底盘系统和车身 系统等。哀求实时程序必须担保在严格的韶光限定内相应,特点包括速率快, 吞吐量大,代码精简,代码规模小等;(2)基于 POSIX 标准的操作系统:主 要面向智能驾驶系统,紧张知足其高通信和低延时的哀求。
汽车电控 ECU 必须是高稳定性的嵌入式实时性操作系统,主流的嵌入式实时 操作系统都兼容 OSEK/VDX 和 Classic AUTOSAR 这两类汽车电子软件标准。 嵌入式实时操作系统具有高可靠性、实时性、交互性以及多路性的上风,系统 相应极高,常日在毫秒或者微秒级别,知足了高实时性的哀求。目前,主流的 嵌入式实时操作系统都兼容 OSEK/VDX 和 Classic AUTOSAR 这两类汽车电子 软件标准。
欧洲在上世纪 90 年代提出了汽车电子上分布式实时掌握系统的开放式系统标 准 OSEK/VDX。但随着技能、产品、客户需求等的升级,OSEK 标准逐渐不能 支持新的硬件平台。2003 年,宝马、博世、大陆、戴姆勒、通用、福特、标志 雪铁龙、丰田、大众 9 家企业作为核心成员,成立 AUTOSAR 组织,致力于建 立一个标准化平台,独立于硬件的分层软件架构,制订各种车辆运用接口规范 和集成标准,AUTOSAR 是基于 OSEK/VDX 发展出来的,但涉及的范围更广。
AUTOSAR 紧张包括 Classic Platform AUTOSAR(CP)和 Adaptive Platform AUTOSAR(AP)两个平台规范:CP AUTOSAR 是基于 OSEK/VDX 标准的,广泛运用于传统嵌入式 ECU 中,如发动机掌握器、电机掌握器、整车 掌握器、BMS 掌握器等;AP AUTOSAR 基于 POSIX,紧张运用于自动驾驶等 需求高打算能力、高带宽通信、分布式支配的下一代汽车运用领域中。
QNX、Linux、VxWorks 是紧张的底层内核
狭义 OS 仅包含内核(如 QNX、Linux),广义 OS 从下至上包括从 BSP、操 作系统内核、中间件及库组件等硬件和上层运用之间的所有程序。
QNX、Linux 是目前常见内核 OS,VxWorks 也有一定运用。随着 WinCE 停 止更新逐渐退出,OS 内核的格局较为稳定,紧张玩家为 QNX(Blackberry)、 Linux(开源基金会)、VxWorks(风河)。个中 Linux 属于非实时操作系统, 而 QNX 和 VxWorks 属于实时操作系统,WinCE 是微软开拓的嵌入式操作系统, 正在逐步退出汽车操作系统市场。
(1)Blackberry QNX: QNX 是屈服 POSIX 规范的类 UNIX 实时操作系统,是环球第一款达到 ASIL D 级别的车载操作系统,优点是稳定性和安全性非常高,QNX 依赖其微内核架构 实现性能和可靠性的平衡,紧张特点有内核小、代码少以及故障影响小,驱动 等缺点不会导致全体系统都崩溃,通用、沃尔沃、奥迪、上汽等均用 QNX 作为 自动驾驶 OS。但缺陷是 QNX 作为非开源系统,兼容性较差,开拓难度大,在 娱乐系统开拓中运用不多,紧张是开放性不足,运用生态缺少。
(2)Linux(Android): Linux 是基于 POSIX 和 UNIX 的开源操作系统,可适配更多的运用处景,具有 很强的定制开拓灵巧度,紧张用于支持更多运用和接口的信息娱乐系统场景。 Android 是谷歌基于 Linux 内核开拓的开源操作系统,紧张运用在车载信息娱乐 系统、导航领域,在海内车载信息娱乐系统领域霸占主流地位。由于其完备开 源,基于 Linux 开拓的难度也极大,而且开拓周期比较长,这就限定了车机系 统进入门槛。
(3)VxWorks: VxWorks 由 Wind River 设计开拓的嵌入式实时操作系统,以其良好的可靠性和 卓越的实时性被广泛地运用在通信、军事、航空、航天等领域,VxWorks 由 400 多个相对独立的目标模块组成,但与 Linux 比较,VxWorks 须要收取高昂的授 权费,开拓定制本钱较高,这限定了其市场霸占率的增长。
QNX、Linux 是当前车机 OS 内核的首选。根据赛迪顾问的统计,QNX 由于其 范例的实时性、低延时、高稳定等特色,2021 年 QNX 市占率达到 43%,是当 前市占份额最高的车机 OS,已运用在包括宝马、奥迪、奔驰等超过 40 个品牌, 环球利用了 QNX 的汽车超 1.75 亿辆;Linux(含 Android)Linux 版本丰富, 经由改造 Linux 内核也将具备实时性功能,21 年市占率 35%;WinCE 当前市 占率 8%,呈现快速下滑态势,未来可能将逐步在市场消逝;VxWorks 同时具 备实时性及开源特点,但其业务重点一贯在繁芜工业领域,对付汽车家当投入 较少,售价及维修用度极其昂贵,目前仅在部分高端品牌车型上有所考试测验。(报告来源:未来智库)
QNX+Linux 或 QNX+Android 是当前的主流趋势
随着智能座舱和智能驾驶的进步,OEM 厂商更加关注车机 OS。然而,无论是 传统 OEM 巨子或是造车新势力,从零开始开拓操作系统都绝非易事,根据对 根本系统的改造程度不同,一样平常可以分为三类:
(1)定制型车机 OS:在根本 OS 的根本上进行深度开拓和定制(包括系统内 核修正),与 Tier1 和主机厂一起实现座舱系统平台或自动驾驶系统平台。例 如百度车载 OS、大众 VW.OS、特斯拉 Version;
(2)ROM 型车机 OS:基于 Android 或 Linux 定制开拓,无需变动系统内核。 外洋主机厂多选择基于 Linux 开拓 ROM 型车机 OS,海内自主品牌则紧张选择 运用生态更好的 Android。例如奔驰、宝马、蔚来、小鹏等整车厂的车机系统都 属于 ROM 型车机 OS;
(3)超级汽车 APP:并非完全的车机 OS,而是手机映射系统,是指集舆图、音乐、语音、社交等功能于一体的多功能 APP,知足车主需求。例如百度 Carlife、 华为 HiCar、苹果 CarPlay、谷歌 AndroidAuto 等。
QNX+Linux 或者是 QNX+Android 是当前智能驾驶 OS+智能座舱 OS 的紧张 选择。当前 QNX、Linux(包含 Android)仍是 OS 底层内核的紧张选择,无论 是智能驾驶 OS 还是智能座舱 OS 基本都会采取 QNX+Linux 或者是 QNX+Android 的组合办法。以 QNX 为代表的实时操作系统紧张用在驾驶 OS 上,由于运用生态上较为薄弱,当前座舱 OS 主流是 Android 以及基于 Linux 系统的定制型及 ROM 型系统。
5 系统软件之二:硬件抽象层与中间件层
硬件抽象层之一 BSP:主板硬件与操作系统之间的桥梁
BSP(Board Support Package,板级支持包)是构建嵌入式操作系统所需的 勾引程序、内核、根文件系统和工具链供应的完全的软件资源包。对付详细的 硬件平台,与硬件干系的代码都被封装在 BSP 中,由 BSP 向上供应虚拟的硬 件平台,BSP 与操作系统通过定义好的接口进行交互。
BSP 介于主板硬件和操作系统之间的一层,也属于操作系统的一部分,紧张目 的是为了支持操作系统,使之能够更好的运行于硬件主板,为 OS 和硬件设备 的交互操作搭建了一个桥梁。由于所属的中介位置,BSP 的功能分为两部分, 一方面为 OS 及上层运用程序供应一个与硬件无关的软件平台,另一方面 OS 可以通过 BSP 来完成对指定硬件的配置和管理。
不同的操作系统对应于不同定义形式的 BSP。例如,VxWorks 的 BSP 和 Linux 的 BSP 相对付某一 CPU 来说只管实现的功能一样,但写法和接口定义是完备 不同的,以是写 BSP 一定要按照该系统 BSP 的定义形式来写,这样才能与上 层 OS 保持精确的接口,良好的支持上层 OS。
硬件抽象层之二 Hypervisor:虚拟化平台,跨平台运用的主要路子
供应平台虚拟化的层称为 Hypervisor。虚拟化是通过某种办法隐蔽底层物理硬 件的过程,从而实现多个操作系统可以透明地利用和共享硬件。Hypervisor 是 实现跨平台运用、提高硬件利用率的主要路子。车载领域的 Hypervisor 卖力管 理并虚拟化异构硬件资源,以供应给运行在 Hypervisor 之上的多个操作系统内 核。Hypervisor 支持异构硬件单元(包括掌握单元、打算单元、AI 单元)的隔 离,在同一个异构硬件平台上支持不同的操作系统内核,从而支持不同种类的 运用。
Hypervisor 虚拟机管理助力多系统领悟。Hypervisor(虚拟机)是运行在物理 做事器和操作系统之间的中间软件层,可用于同步支持 Android、Linux、 QNX多系统。根据 ISO26262 标准规定,仪表盘的关键数据和代码与娱乐信息系统 属于不同等级,主流市场中,QNX 或 Linux 系统用来驱动仪表系统,信息娱乐 系统则以 Android 为主,目前技能只能将两个别系分开装置在各自芯片中。然 而,虚拟机可以同时运作符合车规安全标准的 QNX 与 Linux,因此虚拟机管理 的观点被引入智能座舱操作系统。
随着液晶仪表以及其他安全功能的遍及,供应商不须要装载多个硬件来实现不 同的功能需求,只须要在车载主芯片上进行虚拟化的软件配置,形成多个虚拟 机,在每个虚拟机上运行相应的软件即可知足需求。引入虚拟机管理最主要的 意义在于虚拟机可以供应一个同时运行两个及以上独立操作系统的环境,比如 在智能座舱中同时运行 Android(座舱 OS)和 QNX(车控 OS),为智能网联 汽车的运用供应高性价比且符合安全哀求的平台。
QNX Hypervisor是当前市场的主流。目前常见的Hypervisor包括黑莓的QNX、 英特尔与 Linux 主导的 ACRN、Mobica 为代表的 XEN、松下收购的 Open Synergy 的 COQOS、德国大陆汽车的 L4RE,法国 VOSyS 的 VOSySmonitor 等,个中最主流的是黑莓的 QNX 与英特尔与 Linux 主导的 ACRN,个中黑莓的 QNX 是目前唯一被大规模商用且安全等级达到 ASIL D 级的虚拟化操作系统。
中科创达、武汉光庭信息、南京诚迈科技是黑莓 VAI 项目的系统集成商类的合 作伙伴。2017 年 3 月,黑莓公司宣告正式成立 VAI(Value-Added Integrator) 项目,拓展嵌入式软件市场,成为黑莓公司 VAI 项目互助伙伴,将基于黑莓的 嵌入式技能供应集成做事、安全关键型办理方案,包括黑莓 QNX Neutrino 实 时操作系统、QNX Momentics 工具套件、QNX 管理程序、运用程序和媒体 QNX SDK、QNX 无线架构、QNX 认证操作系统、QNX 医用操作系统、Certicom 工具包、Certicom 管理的公钥根本举动步伐以及 Certicom 资产管理系统。目前, 黑莓 VAI 项目的中国区系统集成商类的互助伙伴紧张包括中科创达、武汉光庭 信息、南京诚迈科技等。
长期看,智能座舱与自动驾驶两大系统终将走向领悟。由于目前车控域与座舱 域两者的发展目标平行,同时,由于 QNX、Linux 与 Andriod 三大系统各有利害,因此,通过虚拟机管理多个独立系统是当下实现“多快好省”的智能网联 汽车的发展路径。但从长期看,想要真正实现高等自动驾驶的必要条件便是车 控与座舱的领悟,即智能座舱与自动驾驶系统的容二虎,这样将会从整体层面 给未来留下更系统的升级空间。当然两大系统的领悟也面临着系统叠加导致的 片负载加重,对打算性能形成寻衅。
中间件层:助力软硬件解耦分离,提升运用层开拓效率
中间件隔离运用层与底层硬件,助力软硬件解耦。中间件位于操作系统、网络 和数据库之上,运用软件的下层,浸染是为处于自己上层的运用软件供应运行 与开拓的环境,帮助用户灵巧、高效地开拓和集成繁芜的运用软件,实现软硬 件的解耦分离。车企致力于定义更统一的中间件通信和做事,以降落开拓本钱 和系统繁芜度,操作软件(OS)和中间件是促进软硬件分离的底层软件组件。 纵然车企选择自研操作系统,但同时也会依赖于供应商供应标准中间件产品, 尤其根本软件平台的架构极其主要,可大幅提升运用层软件的开拓效率。
所有中间件方案中,最著名的是 CP AUTOSAR 的 RTE。AUTOSAR 的两个平 台 AUTOSAR Classic 和 AUTOSAR Adaptive 为不同的车辆用例供应了分层的 软件体系构造方法,AUTOSAR 以中间件 RTE(Runtime Environment)为界, 隔离上层的运用层(Application Layer)与下层的根本软件(Basic Software)。 RTE 使得硬件层完备独立于运用层,OEM 厂商可以专注于开拓特定的、有竞 争力的运用软件,同时使得厂商不关心的根本软件层被标准化。
分布式通信(Data Distribution Service, DDS)通过实现低延迟数据连接、极 高的可靠性和可扩展的灵巧架构,使数据成为未来移动数字平台的中央。DDS 供应的用于以数据为中央的连接的中间件协议、连接框架和 API 标准。它集成 了分布式系统的组件,供应了低延迟的数据连接、极高的可靠性和可扩展的体 系构造,知足业务和任务关键型运用程序的需求。AUTOSAR Adaptive 平台 2017 年推出,2018 年便集成了 DDS 标准,将 DDS 与 AUTOSAR 结合利用, 不仅可以担保和扩展 AUTOSAR 系统内部互操作性的功能,而且还可以将其开 放给来自不同生态系统等行业的外部系统。
国产 AUTOSAR 供应商不断崛起。AUTOSAR 标准发展了十多年,已经形成非 常繁芜的技能体系。各工具厂商开拓了相应的支撑软件,以助力主机厂加速实 现 AUTOSAR 的落地。目前环球有名的 AUTOSAR 办理方案厂商包括 ETAS(博 世)、EB(大陆)、Mentor Graphics(西门子)、Wind River、Vector、KPIT 等,海内紧张是东软睿驰、经纬恒润等。
6 功能软件、工具链及运用软件:
功能软件:自动驾驶的核心共性功能模块
功能软件紧张包含自动驾驶的核心共性功能模块。核心共性功能模块包括自动 驾驶通用框架、网联、云控等,结合系统软件,共同构成完全的自动驾驶操作 系统,支撑自动驾驶技能实现。
(1)智能驾驶通用模型: 智能驾驶通用模型是对智能驾驶中智能认知、智能决策和智能掌握等过程的模 型化抽象。对应于自动驾驶中环境感知、决策与方案、掌握与实行三大部分, 通用模型也可以分为环境模型、方案模型和掌握模型等。自动驾驶会产生安全 和产品化共性需求,通过设计和实现通用框架模块来知足这些共性需求,是保 障自动驾驶系统实时、安全、可扩展和可定制的根本。
(2)功能软件通用框架: 功能软件通用框架是承载智能驾驶通用模型的根本,是功能软件的核心和驱动 部分,可以分为数据流框架和根本做事两部分。
数据流框架向下封装不同的智能驾驶系统软件和中间件做事,向智能驾驶 通用模型中的算法供应与底层系统软件解耦的算法框架。数据流框架的主 要浸染是对智能驾驶通用模型中的算法进行抽象、支配、驱动,办理跨域、 跨平台支配和打算的问题。
根本做事是功能软件层共用的基本做事,包括可靠冗余组件、信息安全基 本做事以及网联云控做事等。个中,可靠冗余组件是担保自动驾驶安全可 控的关键,也是车控操作系统取得操作系统全栈功能安全认证的主要保障; 信息安全根本做事为车端数据定义了数据类型和安全等级,为车端功能和 运用定义的数据处理功能定义;网联云控做事可供应操作系统的安全冗余 信息、超视距信息和通用模型的信息。
(3)数据抽象: 数据抽象可以为上层各模型供应数据源。通过对传感器、实行器、自车状态、 舆图以及来自云真个接口等数据进行标准化处理,数据抽象的过程可以为智能 驾驶通用模型供应各种不同的数据源进而建立异构硬件数据抽象,达到功能和 运用开拓与底层硬件的解耦和依赖。一样平常来说,数据抽象可以分为分类、聚拢 与概括三种类型。
工具链:提升平台软硬件研发效率的主要路子
车载打算平台开拓的软硬件环境以及全栈工具链成为提升开拓效率的主要路子 之一。高阶自动驾驶技能不断迭代,车载打算平台的研发更须要对产品进行整 体持续的迭代,而不但是针对单一的模块,或者个中几个功能。全栈式工具链 紧张包括开拓工具、集成工具、仿真工具、调试工具、测试工具等。
运用软件:OEM 品牌智能化产品力的直接表示
运用软件作为系统软件与功能软件之上独立开拓的软件程序,更是 OEM 品牌 智能化产品力的直接表示。运用软件紧张包括面向自动驾驶算法、舆图导航类、车载语音、OTA 与云做事、信息娱乐等。
(1)自动驾驶算法
自动驾驶算法是决定车辆智能化水平的关键所在。自动驾驶算法覆盖感知、决 策、实行三个层次。感知类算法,SLAM(Simultaneous localization and mapping,同步定位与建图)算法是一个主要分支,SLAM 算法根据点云数据 传感器的不同又可分为视觉 SLAM 算法、激光 SLAM 算法以及多传感器领悟算 法;决策类算法包括自动驾驶方案算法、自动驾驶决策算法;实行类算法紧张 为自动驾驶掌握算法。
(2)高精度舆图
高精度舆图,即 HD Map(High Definition Map)或 HAD Map(Highly Automated Driving Map),是指绝对精度和相对精度均在 1 米以内的高精度、 高新鲜度、高丰富度的电子舆图。其信息包括道路类型、曲率、车道线位置等 道路信息,路边根本举动步伐、障碍物、交通标志等环境工具信息,以及交通流量、 红绿灯状态信息等实时动态信息。
高精度舆图是实现高度自动化驾驶的必要条件,是 L3 及以上级别的自动驾驶汽车的必备选项。高精度舆图可有效填补传感器的性能边界,供应主要的先验 信息,是实现高度自动化驾驶乃至无人驾驶的必要条件,也是未来车路协同的 主要载体。
百度、四维图新、高德霸占紧张份额,海内市场呈现“三足鼎立”。由于舆图 导航类业务的资质限定,海内高精度舆图紧张玩家大多是本土公司,根据 IDC 统计,2020 年海内高精度舆图行业市场份额前五名公司为百度、四维图新、高 德、易图通以及 Here,个中 CR3 超过 65%,呈现“三足鼎立”的局势。
估量 2025 年海内市场规模达 32 亿美元。按照 3 亿辆汽车保有量及单车百元年 做事费测算,海内市场规模将从 2020 年的 6.4 亿美元增长到 2025 年的 32 亿 美元,估量 2025 年环球市场份额将达到 35.6%,CAGR 达到 38.0%,高于同 期环球增速。
(3)车载语音
车载语音是车内最简洁、最人性化、最安全的交互办法,也是未来最紧张的车 内交互办法。随着 AI 和硬件性能的增强,语音交互是未来汽车的绝对主流。语 音交互紧张是依赖 NLP 算法对语音进行解析,使得自动驾驶系统更随意马虎理解驾 驶员的指令。2020 年智能座舱中自然语音识别搭载率大约为 67%,估量 2024 年可达 84%。目前,海内乘用车车载语音装置率超过 64.8%,大大提高了行车 安全性以及便捷性。
科大讯飞与 Cerence 领先中国车载语音市场,互联网企业及车厂纷纭入局。竞 争格局方面,根据高工汽车统计数据显示,Cerence 市占率为 39.5%,排名第 一,Cerence 作为环球车载语音的龙头,客户紧张以合伙车型为主;科大讯飞是中国车载语音市场的领头羊,市占率超过 38%,排名第二;互联网企业方面, BAT 也已分别入局车载语音,个中百度发展更为迅速,市场份额 7.2%。腾讯目 前主打车载运用“腾讯随行”和“腾讯爱趣听”等生态做事上车,排名第五; 此外,大众问问凭借其主机厂的背景上风入局,凭借大众、奥迪等多款前装车 型市场霸占率快速提升。
7 重点公司剖析
中科创达:环球领先的智能平台技能做事供应商
中科创达自 13 年开始进入智能网联汽车业务,目前已成为环球有名的智能网 联汽车平台产品供应商,在环球拥有超过 200 家智能网联汽车客户。公司能够 供应从操作系统开拓、核心技能授权到运用定制、自动化测试等一站式、全产 品生命周期的办理方案、广泛运用于智能座舱、智能驾驶、基于车云一体的 SOA 的整车智能操作系统,已经形成了横跨智能座舱、智能驾驶、智能交互、智能 网联和仿真测试等产品矩阵。
公司在智能网联汽车业务上的布局可以定义为“两纵一横”,两纵分别是智能 座舱域与自动驾驶域,一横则代表了底层的操作系统。随着智能座舱在智能网联汽车上率先落地,渗透率不断提升,公司自 13 年进入汽车业务以来,也环绕 着智能座舱不断更新和迭代其办理方案。随着自动驾驶技能的逐渐成熟,低速 领域如自动停车技能 APA 即将率先落地,公司也于 21 年 2 月完成对自动停车 算法公司辅易航的收购,持续布局低速自动驾驶域,而在高速领域,目前技能 尚未成熟,行业标准尚未明确,公司持续与高通互助,为客户供应高质量的解 决方案。在此之外,公司还不断实现底层软件平台化,打造了车云一体、跨域、 跨 OS 的 SOA 智能软件平台,为智能座舱域与自动驾驶域打造高性能的操作系 统 OS。
德赛西威:汽车电子 Tier 1 龙头,ADAS 先发上风显著
德赛西威出身德系背景,布局智能座舱、智能驾驶和网联做事三大业务。公司 创立于 1986 年,原为中德合伙企业,后成为纯中资企业,公司历史悠久,客 户群体覆盖主流欧美系车厂、日系车厂和海内自主品牌车厂。目前公司紧张深 耕智能座舱、智能驾驶和网联做事三大业务板块。智能座舱为公司核心主业务 务,营收占比超过八成,紧张供应座舱域掌握器、车载信息娱乐系统、驾驶信 息显示系统、车载空调掌握器、新兴业务显示模组及系统、液晶仪表等干系产 品;在智能驾驶领域,公司紧张供应从智能驾驶域掌握器、传感器、全自动泊 车系统、360 高清环视系统、DMS 等产品,21 年 H1 营收占比 14%。
以域掌握器作为切入点,在 ADAS 领域先发上风。公司目前在自动驾驶域掌握 器已经推出四款产品,个中,IPU01 面向 L1 级别、IPU02 面向 L2 级别,两款 产品主打高性价比,IPU03 和 IPU04 面向高阶自动驾驶,紧张高性能。IPU01 适配低速环视、停车干系功能,算力较低;IPU02 搭载德州仪器芯片 TDA4, 知足代客停车、高速巡航等功能,已经量产出货给吉利、上汽、长城、广汽、 通用及造车新势力等多家客户;IPU03 基于英伟达 Xavier 芯片,具有 30 TOP 算力,可以实现高速场景下高下匝道、自主变道,低速场景下 APA、 AVP 以 及城市道路的塞车自动跟车等功能,自 2020 年开始给小鹏 P7 批量供货,这也 是英伟达 Xavier 域掌握器的环球首次量产;IPU04 是基于英伟达 Orin 系列芯 片,最高算力可拓展到 2000 TOPS,实现高阶自动驾驶功能全覆盖,已在多个 海内头部主机厂完成定点,估量在 22 年量产。(报告来源:未来智库)
光庭信息:领先的智能汽车软件办理方案供应商
光庭信息是领先的智能汽车软件办理方案供应商。光庭的业务从车载导航系统 逐渐拓展至车载信息娱乐系统、液晶仪表显示系统、 车载通讯系统、高等驾驶 赞助系统、底盘电控系统、电驱动系统等领域,具备了面向智能网联汽车的全 域全栈软件开拓能力。公司有名客户包括日本电产、延锋伟世通、佛吉亚笙歌、 电装、马瑞利、安波福、麦格纳等环球有名汽车零部件供应商,公司与上汽集 团、佛吉亚笙歌、电装、日本电产形成投资或计策互助关系。公司其他的紧张 客户包括日产汽车、雷诺三星、长安汽车、 MSE、日立、华为等。
公司紧张布局智能座舱、智能电控、智能驾驶、测试工具、舆图做事五大领域, 智能座舱为公司当前第一大业务板块。公司凭借高品质的软件工程技能做事和 规模化的快速交付能力,紧张布局智能座舱、智能电控、智能驾驶、智能网联 汽车测试、移动舆图数据做事五大领域。个中,智能座舱为公司第一大业务, 18 年-21 年 H1 营收占比 39.31%、37.96%、33.83%和 39.15%,紧张供应 UX 设计和 HMI 软件开拓做事、图形化仪表办理方案、信息娱乐系统软硬分离办理 方案、虚拟化座舱整体办理方案及 T-BOX 软件办理方案等。
(本文仅供参考,不代表我们的任何投资建议。如需利用干系信息,请参阅报告原文。)
精选报告来源:【未来智库】。未来智库 - 官方网站