为了更好的理解低速容错CAN,首先要从它的协议讲起。低速容错CAN最早被定义在ISO11519协议中,后续由于符合11898-3协议标准的样件也完备符合ISO11519-2协议的哀求,同时由于11898协议运用的范围更全更广,以是在2006年ISO11519-2协议彻底的被11898-3协议所替代。ISO11898-3定义了低速容错CAN的物理层、低速容错CAN的事情机制以及容错机制的实现。
低速容错CAN的物理层:与高速CAN一样,低速容错CAN也利用了差分双绞线进行传输,有CAN_H、CAN_L两线,并且在严格的工业运用处所与高速CAN一样哀求利用专用的屏蔽双绞线并加必要的防护电路。
在差分电压的变革上低速容错CAN在显隐性跳转的时候CANH和CANL电压的变革是比高速CAN要大的,这意味着低速容错CAN有着更高的抗滋扰性。
11898-3定义了低速容错CAN在隐性状态时,CANH为0V、CANL为5V。而当低速容错CAN要发送显性位时,CANL会跳转到1V、CANH会跳转到4V,这个时候单一条总线的电压变革为4V,而且差分电压大概也为4V(如图1),而高速CAN的差分电压为2V(如图2),同时CANH与CANL从隐性跳转到显性的时候电压的变革仅有1V,这也意味着高速容错CAN的容错性能是不如低速容错CAN的。
图1:低速容错CAN总线电压
图2:高速CAN总线电压
在低速容错CAN的物理层中,11898-3还定义了它的终端电阻是直接端接在支线上的,电阻接线如图3所示。这样做的好处是在容错机制处理部分断路故障时,哪怕会涌现单线通信的情形,也会有终端电阻的存在去匹配阻抗以及减小反射(如图4所示),这样便不会由于断开CANH或CANL的单线而对样件的通信传输造成影响。
图3:终端电阻接线图
图4:容错CAN单线事情时总线拓扑图
协议中容错机制的定义11898-3分别定义了电源故障和总线故障两种类型,而容错机制紧张是对总线故障进行处理。为了应对不同的总线故障,11898-3定义了低速容错CAN须要有三种不同的收发器事情办法:差分驱动和吸收、CANH单线通信、CANL单线通信,三种事情办法对应的故障检测机制分别为状态0:正常事情状态、状态E1:CAN_L故障检测、状态E2:CAN_H故障检测。11898-3定义的几种故障检测机制的故障处理流程图如下。
图5:故障处理流程图
TJA1054实现的容错机制通过之前的先容,我们对低速容错CAN的物理层有了较为全面的理解,现在我们便从物理环境的实现上来讲解低速容错CAN的容错机制。在这我须要为大家先容一款适用于低速容错CAN的收发器芯片-TJA1054。首先是这款芯片的物理环境,其构造图和引脚定义如下图所示,TJA1054在CANH及CANL两端的电阻设计知足了ISO11898-3需求,同时TJA1054设计有门槛电压,能较好的实现低速容错CAN所需求的容错机制。
图6:TJA1054芯片构造图
图7:TJA1054芯片引脚定义图
TJA1054的功能描述TJA1054是掌握器局域网 CAN 中协议掌握器和 CAN 物理总线之间的接口,它紧张用于客车里最高 125KBps的低速运用,这个器件对 CAN 总线供应差动发送能力,对CAN 掌握器供应差动吸收能力。在正常操作模式时(没有线路故障),差动吸收器在管脚 RXD 输出(见图 1)。差动吸收器输入通过集成的滤波器连接到管脚CANH和CANL 波器输入旗子暗记也可以用于单线吸收器。吸收器连接到有门槛电压(差动吸收器的门槛电压为-3.2V)的管脚CANH和CANL确保在单线模式里有最大的噪音容限。
同时定时器功能(TxD 显性超时功能)已在器件中集成,它可以防止由于硬件或软件程序故障,将管脚 TXD 持续地拉成低电平,使总线线路进入持续的显性状态(这种状态会壅塞全体网络的通讯)。
如果引脚 TXD 的低电平持续并超过某个韶光后,发送器会被禁用,定时器会用 TXD 引脚上的高电平复位。而低速容错CAN的容错机制则是通过故障检测器监测总线电平,在监测到个中一条总线故障后,监测器便会切换到相应的模式,模式图如下表所示。这便知足了ISO11898-3中定义的正常事情模式下的三种故障检测机制。下图便是TJA1054在不同缺点状态下的吸收器模式列表。
图8:TJA1054在不同缺点状态下的吸收器模式
对付上表中涌现的三种吸收器模式,我将利用表格的形式为大家进行先容。首先是差动模式,由于TJA1054设定了差动吸收器门槛电压为-3.2V,这确保了当涌现下表中故障1、2、5、6a时,虽然CANH和CANL的电压会由于以上四种故障有改变,但终极差分电压Vdiff都能在隐性时小于-3.2V显性时大于-3.2V,以是不须要进行调度便能连续通信。
当涌现了下表中故障4、6、7三种故障时,差分模式已无法知足总线的正常通信。TJA1054会断开CANL,则CANL会保持Vcc的电压不变,一贯为5V。此时差分电压Vdiff能知足在隐性时小于-3.2V显性时大于-3.2V,实现对故障4、6、7三种故障的容错。
当涌现CANH单线通信模式也无法办理的故障时,如下表故障3和3a,TJA1054会先断开CANL考试测验用CANH单线通信来保持通信,但故障3和3a在此时的差分电压会一贯大于-3.2V,使总线永劫光处于显性状态。以是这时TJA1054会考试测验保持CANL通信不变,断开CANH。此时CANH上电平始终为0V,差分电压Vdiff在总线为隐性时为-5V(小于-3.2V),显性时为-1.5V(大于-3.2),符合规范规定及利用需求,以是低速容错CAN在发生故障3和故障3a时正常通信。
1. 总结
当前,低速容错CAN由于其通信速率的限定,其在车载领域的运用更少了,本文所先容的低速容错CAN的物理层、容错机制以及容错机制在芯片中的实现事理,希望可以加深大家对CAN通信事理的理解。
北汇信息专注于汽车电子网络通信、诊断刷写、逻辑功能测试开拓做事,期待进一步沟通互换、共享互助的机会。
图片来源:
图1:源自于ISO11898-3(2006)第9页figure6
图2:源自于ISO11898-2(2016)第5页figure3
图3:源自于ISO11898-3(2006)第5页figure3
图4:源自于网图,11898-3(2006)第19页figure11移除CANH或CANL后可以得到这个简图
图5:源自于ISO11898-3(2006)第22页figure12
图7:源自于TJA1054运用指南第3页
图8:源自于TJA1054运用指南第3页
图9:源自于TJA1054运用指南第4页简化后
参考文档:
ISO11898-2(2016)、ISO11898-3(2006)、TJA1054运用指南